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DATA SCIENCE 

 
COURSE OBJECTIVES: 

The students should be able to: 

1. Understand the data science process. 

2. Conceive the methods in R to load, explore and manage large data. 

3. Choose and evaluate the models for analysis. 

4. Describe the regression analysis. 

5. Select the methods for displaying the predicted results. 
 

UNIT I: Introduction to Data Science and Overview of R Data Science Process: Roles in 

a data science project, Stages in a data science project, Setting expectations. Basic Features 

of R, R installation, Basic Data Types: Numeric, Integer, Complex, Logical, Character. Data 

Structures: Vectors, Matrix, Lists, Indexing, Named Values, Factors. Subsetting R Objects: 

Sub setting a Vector, Matrix, Lists, Partial Matching, Removing NA Values. Control 

Structures: if-else, for Loop, while Loop, next, break. Functions: Named Arguments, Default 

Parameters, Return Values. 

UNIT II: Loading, Exploring and Managing Data Working with data from files: 

Reading and Writing Data, Reading Data Files with read.table (), Reading in Larger Datasets 
with read.table. Working with relational databases. Data manipulation packages: dplyr, 

data.table, reshape2, tidyr, lubridate. 

 

UNIT III:Modelling Methods-I: Choosing and evaluating Models Mapping problems to 

machine learning tasks: Classification problems, Scoring problems, Grouping: working 

without known targets, Problem-to-method mapping, Evaluating models: Over fitting, 

Measures of model performance, Evaluating classification models, Evaluating scoring 

models, Evaluating probability model. 

UNIT IV: Modelling Methods-II: Linear and logistic regression Using linear regression: 

Understanding linear regression, Building a linear regression model, making predictions. 

Using logistic regression: Understanding logistic regression, Building a logistic regression 

model, making predictions. 

UNIT V: Data visualization with R:Introduction to ggplot2: A worked example, Placing 

the data and mapping options, Graphs as objects, Univariate Graphs: Categorical, 

Quantitative. Bivariate Graphs- Categorical vs. Categorical, 

Quantitative vs Quantitative, Categorical vs. Quantitative, Multivariate Graphs : 

Grouping, Faceting. 



TEXT BOOKS: 

1. Practical Data Science with R, Nina Zumel & John Mount , Manning 

PublicationsNY, 2014. 

2. Beginning Data Science in R-Data Analysis, Visualization, and Modellingfor the 

Data Scientist - Thomas Mailund –Apress -2017. 

 
REFERENCE BOOKS: 

1. The Comprehensive R Archive Network- https://cran.r-project.org. 

2. R for Data Science by Hadley Wickham and Garrett Grolemund , 2017 ,Published 

by OReilly Media, Inc. 

3. R Programming for Data Science -Roger D. Peng, 2015 , Lean Publishing. 

4. https://rkabacoff.github.io/datavis/IntroGGPLOT.html. 

 

 
COURSE OUTCOMES: 

The students will be able to: 

1. Analyze the basics in R programming in terms of constructs, control 

statements,Functions. 

2. Implement Data Preprocessing using R Libraries. 

3. Apply the R programming from a statistical perspective and ModelingMethods. 

4. Build regression models for a given problem. 

5. Illustrate R programming tools for Graphs. 
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UNIT-I 

 

Introduction to Data Science and Overview of R 

Data Science Process: Roles in a data science project, Stages in a data science project, 

Setting expectations. Basic Features of R, R installation, Basic Data Types: Numeric, 

Integer, Complex, Logical, Character. Data Structures: Vectors, Matrix, Lists, 

Indexing, Named Values, Factors. Subsetting R Objects: Sub setting a Vector, 

Matrix, Lists, Partial Matching, Removing NA Values. Control Structures: if-else, for 

Loop, while Loop, next, break. Functions: Named Arguments , Default Parameters, 

Return Values. 

 

Roles in a data science project 
 

 
PROJECT SPONSOR 

 

The most important role in a data science project is the project sponsor. The sponsor is the person 

who wants the data science result; generally they represent the business interests. The sponsor is 

responsible for deciding whether the project is a success or failure. The ideal sponsor meets the fol- 

lowing condition: if they’re satisfied with the project outcome, then the project is by definition a 

success. 

 

KEEP THE SPONSOR INFORMED AND INVOLVED 

 

It’s critical to keep the sponsor informed and involved. Show them plans, progress, and intermedi- 

ate successes or failures in terms they can understand. 

 

CLIENT 

 

While the sponsor is the role that represents the business interest, the client is the role that repre- 

sents the model’s end users’ interests. The client is more hands-on than the sponsor; they’re the in- 

terface between the technical details of building a good model and the day-to-day work process into 

which the model will be deployed. They aren’t necessarily mathematically or statistically sophisti- 

cated, but are familiar with the relevant business processes and serve as the domain expert on the 

team.As with the sponsor, you should keep the client informed and involved. Ideally you’d like to 

have regular meetings with them to keep your efforts aligned with the needs of the end users. 
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DATA SCIENTIST 

 

The next role in a data science project is the data scientist, who’s responsible for taking all neces- 

sary steps to make the project succeed, including setting the project strategy and keeping the client 

informed. They design the project steps, pick the data sources, and pick the tools to be used. Since 

they pick the techniques that will be tried, they have to be well informed about statistics and ma- 

chine learning. They’re also responsible for project planning and tracking, though they may do this 

with a project management partner. 

 

DATA ARCHITECT 

 

The data architect is responsible for all of the data and its storage. Often this role is filled by some- 

one outside of the data science group, such as a database administrator or architect. Data architects 

often manage data warehouses for many different projects, and they may only be available for quick 

consultation. 

 

OPERATIONS 

 

The operations role is critical both in acquiring data and delivering the final results. The person fill- 

ing this role usually has operational responsibilities outside of the data science group. For example, 

if you’re deploying a data science result that affects how products are sorted on an online shopping 

site, then the person responsible for running the site will have a lot to say about how such a thing 

can be deployed. This person will likely have constraints on response time, programming language, 

or data size that you need to respect in deployment. The person in the operations role may already 

be supporting your sponsor or your client, so they’re often easy to find. 

 

The Lifecycle of Data Science 

 

The major steps in the life cycle of Data Science project are as follows: 

 

1. Problem identification 

 

This is the crucial step in any Data Science project. First thing is understanding in what way Data 

Science is useful in the domain under consideration and identification of appropriate tasks which 

are useful for the same. Domain experts and Data Scientists are the key persons in the problem 

identification of problem. Domain expert has in depth knowledge of the application domain and 

exactly what is the problem to be solved. Data Scientist understands the domain and help in 

identification of problem and possible solutions to the problems. 

 

2. Business Understanding 

 

Understanding what customer exactly wants from the business perspective is nothing but Business 

Understanding. Whether customer wish to do predictions or want to improve sales or minimise the 

loss or optimise any particular process etc forms the business goals. During business understanding 

two important steps are followed: 

https://www.knowledgehut.com/blog/data-science/data-science-projects-for-begginers-and-experts
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 KPI (Key Performance Indicator) 

 

For any data science project, key performance indicators define the performance or success of the 

project. There is a need to be an agreement between the customer and data science project team 

on Business related indicators and related data science project goals. Depending on the business 

need the business indicators  are devised  and then accordingly the  data  science  project 

team decides the goals and indicators. To better understand this let us see an example. Suppose the 

business need is to optimise the overall spendings of the company, then the data science goal will 

be to use the existing resources to manage double the clients. Defining the Key performance 

Indicators is very crucial for any data science projects as the cost of the solutions will be different 

for different goals. 

 

 SLA (Service Level Agreement) 

 

Once the performance indicators are set then finalizing the service level agreement is important. As 

per the business goals the service level agreement terms are decided. For example, for any airline 

reservation system simultaneous processing of say 1000 users is required. Then the product must 

satisfy this service requirement is the part of service level agreement. Once the performance 

indicators are agreed and service level agreement is completed then the project proceeds to the next 

important step. 

 

3. Collecting Data 

 

The basic data collection can be done using the surveys. Generally, the data collected through 

surveys provide important insights. Much of the data is collected from the various processes 

followed in the enterprise. At various steps the data is recorded in various software systems used in 

the enterprise which is important to understand the process followed from the product development 

to deployment and delivery. The historical data available through archives is also important to 

betterunderstand the business. Transactional data also plays a vital role as it is collected on a daily 

basis. Many statistical methods are applied to the data to extract the important information related to 

business. In data science project the major role is played by data and so proper data collection 

methods are important. 

 

4. Pre-processing data 

 

Large data is collected from archives, daily transactions and intermediate records. The data is 

available in various formats and in various forms. Some data may be available in hard copy formats 

also. The data is scattered at various places on various servers. All these data are extracted and 

converted into single format and then processed. Typically, as data warehouse is constructed where 

the Extract, Transform and Loading (ETL) process or operations are carried out. In the data science 

project this ETL operation is vital and important. A data architect role is important in this stage who 

decides the structure of data warehouse and perform the steps of ETL operations. 

 

5. Analyzing data 

Now that the data is available and ready in the format required then next important step is to 

understand the data in depth. This understanding comes from analysis of data using various 

https://www.knowledgehut.com/blog/data-science/statistical-analysis-in-data-science
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statistical tools available. A data engineer plays a vital role in analysis of data. This step is also 

called as Exploratory Data Analysis (EDA). Here the data is examined by formulating the various 

statistical functions and dependent and independent variables or features are identified. Careful 

analysis of data revels which data or features are important and what is the spread of data. Various 

plots are utilized to visualize the data for better understanding. The tools like Tableau, PowerBI etc 

are famous for performing Exploratory Data Analysis and Visualization. Knowledge of Data 

Science with Python and R is important for performing EDA on any type of data. 

 

6. Data Modelling 

 

Data modelling is the important next step once the data is analysed and visualized. The important 

components are retained in the dataset and thus data is further refined. Now the important is to 

decide how to model the data? What tasks are suitable for modelling? The tasks, like classification 

or regression, which is suitable is dependent upon what business value is required. In these tasks 

also many ways of modelling are available. The Machine Learning engineer applies various 

algorithms to the data and generates the output. While modelling the data many a times the models 

are first tested on dummy data similar to actual data. 

 

7. Model Evaluation/ Monitoring 

 

As there are various ways to model the data so it is important to decide which one is effective. For 

that model evaluation and monitoring phase is very crucial and important. The model is now tested 

with actual data. The data may be very few and in that case the output is monitored for 

improvement. There may be changes in data while model is being evaluated or tested and the output 

will drastically change depending on changes in data. So, while evaluating the model following two 

phases are important: 

 

 Data Drift Analysis 

 

Changes in input data is called as data drift. Data drift is common phenomenon in data science as 

depending on the situation there will be changes in data. Analysis of this change is called Data Drift 

Analysis. The accuracy of the model depends on how well it handles this data drift. The changes in 

data are majorly because of change in statistical properties of data. 

 

 Model Drift Analysis 

 

To discover the data drift machine learning techniques can be used. Also, more sophisticated 

methods like Adaptive Windowing, Page Hinkley etc. are available for use. Modelling Drift 

Analysis is important as we all know change is constant. Incremental learning also can be used 

effectively where the model is exposed to new data incrementally. 

 

8. Model Training 

Once the task and the model are finalised and data drift analysis modelling is finalized then the 

important step is to train the model. The training can be done is phases where the important 

parameters can be further fine tuned to get the required accurate output. The model is exposed to the 

actual data in production phase and output is monitored. 

https://www.knowledgehut.com/data-science/data-science-with-python-certification-training
https://www.knowledgehut.com/data-science/data-science-with-python-certification-training
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9. Model Deployment 

 

Once the model is trained with the actual data and parameters are fine tuned then model is deployed. 

Now the model is exposed to real time data flowing into the system and output is generated. The 

model can be deployed as web service or as an embedded application in edge or mobile application. 

This is very important step as now model is exposed to real world. 

10. Driving insights and generating BI reports 

 

After model deployment in real world, next step is to find out how model is behaving in real world 

scenario. The model is used to get the insights which aid in strategic decisions related to business. 

The business goals are bound to these insights. Various reports are generated to see how business is 

driving. These reports help in finding out if key process indicators are achieved or not. 

 

11. Taking a decision based on insight 

 

For data science to make wonders, every step indicated above has to be done very carefully and 

accurately. When the steps are followed properly then the reports generated in above step helps in 

taking key decisions for the organization. The insights generated helps in taking strategic decisions 

like for example the organization can predict that there will be need of raw material in advance. The 

data science can be of great help in taking many important decisions related to business growth and 

better revenue generation. 

 

Setting Expectations 

 

Developing expectations is the process of deliberately thinking about what you expect before you 

do anything, such as inspect your data, perform a procedure, or enter a command. For experienced 

data analysts, in some circumstances, developing expectations may be an automatic, almost 

subconscious process, but it’s an important activity to cultivate and be deliberate about.For 

example,you may be going out to dinner with friends at a cash-only establishment and need to stop 

by the ATM to withdraw money before meeting up. To make a decision about the amount of money 

you’regoing to withdraw, you have to have developed some expectation of the cost of dinner. This 

may be an automatic expectation because you dine at this establishment regularly so you know what 

the typical cost of a meal is there, which would be an example of a priori knowledge. Another 

example of a priori knowledge would be knowing what a typical meal costs at a restaurant in your 

city, or knowing what a meal at the most expensive restaurants in your city costs. Using that 

information, you could perhaps place an upper and lower bound on how much the meal will 

cost.You may have also sought out external information to develop your expectations, which could 

include asking your friends who will be joining you or who have eaten at the restaurant before 

and/or Googling the restaurant to find general cost information online or a menu with prices. This 

same process, in which you use any a priori information you have and/or external sources to 

determine what you expect when you inspect your data or execute an analysis procedure, applies to 

each core activity of the data analysis process. 

 

Features Of R 

 

1) Open Source 

 

An open-source language is a language on which we can work without any need for a license or a 
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fee. R is an open-source language. We can contribute to the development of R by optimizing our 

packages, developing new ones, and resolving issues. 

2) Platform Independent 

 

R is a platform-independent language or cross-platform programming language which means its 

code can run on all operating systems. R enables programmers to develop software for several 

competing platforms by writing a program only once. R can run quite easily on Windows, Linux, 

and Mac. 

 

3) Machine Learning Operations 

 

R allows us to do various machine learning operations such as classification and regression. For this 

purpose, R provides various packages and features for developing the artificial neural network. R is 

used by the best data scientists in the world. 

 

4) Exemplary support for data wrangling 

 

R allows us to perform data wrangling. R provides packages such as dplyr, readr which are capable 

of transforming messy data into a structured form. 

 

5) Quality plotting and graphing 

 

R simplifies quality plotting and graphing. R libraries such as ggplot2 and plotly advocates for 

visually appealing and aesthetic graphs which set R apart from other programming languages. 

 

6) The array of packages 

 

R has a rich set of packages. R has over 10,000 packages in the CRAN repository which are 

constantly growing. R provides packages for data science and machine learning operations. 

 

7) Statistics 

 

R is mainly known as the language of statistics. It is the main reason why R is predominant than 

other programming languages for the development of statistical tools. 

 
8) Continuously Growing 

 

R is a constantly evolving programming language. Constantly evolving means when something 

evolves, it changes or develops over time, like our taste in music and clothes, which evolve as we 

get older. R is a state of the art which provides updates whenever any new feature is added. 

Limitations of R 

 

1) Data Handling 

 

In R, objects are stored in physical memory. It is in contrast with other programming languages like 

Python. R utilizes more memory as compared to Python. It requires the entire data in one single 

place which is in the memory. It is not an ideal option when we deal with Big Data. 
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2) Basic Security 

 

R lacks basic security. It is an essential part of most programming languages such as Python. 

Because of this, there are many restrictions with R as it cannot be embedded in a web-application. 

 

3) Complicated Language 

 

R is a very complicated language, and it has a steep learning curve. The people who don’t have 

prior knowledge or programming experience may find it difficult to learn R. 

 

4) Weak Origin 

 

The main disadvantage of R is, it does not have support for dynamic or 3D graphics. The reason 

behind this is its origin. It shares its origin with a much older programming language “S.” 

 

5) Lesser Speed 

 

R programming language is much slower than other programming languages such as MATLAB and 

Python. In comparison to other programming language, R packages are much slower. 

 

In R, algorithms are spread across different packages. The programmers who have no prior 

knowledge of packages may find it difficult to implement algorithms. 

Basic Data Types 

The Numeric Type 

The numeric type is what you get any time you write a number into R. You can test if an object is 
numeric using the is.numeric function or by getting the class object. 

is.numeric(2) 

## [1] TRUE 

class(2) 

 
## [1] "numeric" 

 

The Integer Type 

The integer type is used for, well, integers. Surprisingly, the 2 is not an integer in R. It is a numeric 

type which is the larger type that contains all floating-point numbers as well as integers. To get an 

integer you have to make the value explicitly an integer, and you can do that using the function 
as.integer or writing L after the literal. 

is.integer(2) 

## [1] FALSE 

is.integer(2L) 

## [1] TRUE 

x <- as.integer(2) 

is.integer(x) 

## [1] TRUE 

class(x) 

## [1] "integer" 

If you translate a non-integer into an integer, you just get the integer part. 

as.integer(3.2) 

## [1] 3 

as.integer(9.9) 
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## [1] 9 

 

The Complex Type 

If you ever find that you need to work with complex numbers, R has those as well. You construct 

them by adding an imaginary number—a number followed by i—to any number or explicitly using 

the function as. complex. The imaginary number can be zero, 0i, which creates a complex number 

that only has a non-zero real part. 

1 + 0i 

## [1] 1+0i 
is.complex(1 + 0i) 
## [1] TRUE 

class(1 + 0i) 

## [1] "complex" 

sqrt(as.complex(-1)) 

## [1] 0+1i 

 

The Logical Type 

Logical values are what you get if you explicitly type in TRUE or FALSE, but it is also what you 

get if you make, for example, a comparison. 

x <- 5 > 4 

x 

## [1] TRUE 

class(x) 

## [1] "logical" 

is.logical(x) 
## [1] TRUE 

The Character Type 

Finally, characters are what you get when you type in a string such as "hello, world". 

x <- "hello, world" 

class(x) 

## [1] "character" 

is.character(x) 

## [1] TRUE 

Unlike in some languages, character doesn’t mean a single character but any text. So it is not like in 

C 

or Java where you have single character types, 'c', and multi-character strings, "string", they are 

both just 

characters. 
You can, similar to the other types, explicitly convert a value into a character (string) using as. 
character: 

as.character(3.14) 

## [1] "3.14" 

Unlike in some languages, character doesn’t mean a single character but any text. So it is not like in 
C 

or Java where you have single character types, 'c', and multi-character strings, "string", they are 
both just 

characters. 

You can, similar to the other types, explicitly convert a value into a character (string) using as. 

character: 

as.character(3.14) 

## [1] "3.14" 
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Data 

Structures 

vectors 
vectors, which are sequences of values all of the same type. 

v <- c(1, 2, 3) 
or through some other operator or function, e.g., the : operator or the rep function 
1:3 

## [1] 1 2 3 

rep("foo", 3) 

## [1] "foo""foo""foo" 

We can test if something is this kind of vector using the is.atomic function: 

v <- 1:3 

is.atomic(v) 

## [1] TRUE 

v <- 1:3 
is.vector(v) 
## [1] TRUE 

It is just that R only consider such a sequence a vector—in the sense that is.vector returns TRUE— 

if the object doesn’t have any attributes (except for one, names, which it is allowed to have) 
Attributes are meta-information associated with an object, and not something we will deal with 

much here, but you just have to know that is.vector will be FALSE if something that is a 

perfectly goodvector gets an attribute.v <- 1:3 

is.vector(v) 

## [1] TRUE 

attr(v, "foo") <- "bar" 

v 

## [1] 1 2 3 

## attr(,"foo") 

## [1] "bar" 

is.vector(v) 

## [1] FALSE 

So if you want to test if something is the kind of vector I am talking about here, use is.atomic 

instead. When you concatenate (atomic) vectors, you always get another vector back. So when you 

combine several c() calls you don’t get any kind of tree structure if you do something like this: 

c(1, 2, c(3, 4), c(5, 6, 7)) 

## [1] 1 2 3 4 5 6 7 

The type might change, if you try to concatenate vectors of different types, R will try to translate the 

type 

into the most general type of the vectors. 

c(1, 2, 3, "foo") 

## [1] "1""2""3""foo" 

Matrix 
If you want a matrix instead of a vector, what you really want is just a two-dimensional vector. You 

can set the dimensions of a vector using the dim function—it sets one of those attributes we talked 

about previously—where you specify the number of rows and the number of columns you want the 

matrix to have. 

v <- 1:6 
attributes(v) 

## NULL 
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dim(v) <- c(2, 3) 

attributes(v) 

## $dim 

## [1] 2 3 
dim(v) 
## [1] 2 3 

v 

## [,1] [,2] [,3] 
## [1,] 1 3 5 

## [2,] 2 4 6 

When you do this, the values in the vector will go in the matrix column-wise, i.e., the values in the 

vector will go down the first column first and then on to the next column and so forth. You can use the 

convenience function matrix to create matrices and there you can specify if you want 

the values to go by column or by row using the by row 
parameter.v <- 1:6 

matrix(data = v, nrow = 2, ncol = 3, byrow = FALSE) 

## [,1] [,2] [,3] 

## [1,] 1 3 5 

## [2,] 2 4 6 

matrix(data = v, nrow = 2, ncol = 3, byrow = TRUE) 
## [,1] [,2] [,3] 

## [1,] 1 2 3 

## [2,] 4 5 6 

the * operator will not do matrix multiplication. You use * if you want to make element-wise 

multiplication; for matrix multiplication you need the operator %*% instead. 

 
(A <- matrix(1:4, nrow = 2)) 

## [,1] [,2] 

## [1,] 1 3 

## [2,] 2 4 

(B <- matrix(5:8, nrow = 2)) 

## [,1] [,2] 

## [1,] 5 7 

## [2,] 6 8 

A * B 

## [,1] [,2] 

## [1,] 5 21 

## [2,] 12 32 

A %*% B 

## [,1] [,2] 

## [1,] 23 31 

## [2,] 34 46 

If you want to transpose a matrix, you use the t function and, if you want to invert it, you use the 

solve function. 

t(A) 

## [,1] [,2] 
## [1,] 1 2 

## [2,] 3 4 

solve(A) 

## [,1] [,2] 

## [1,] -2 1.5 

## [2,] 1 -0.5 
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Lists 
Lists, like vectors, are sequences, but unlike vectors, the elements of a list can be any kind of 

objects, and they do not have to be the same type of objects. This means that you can construct more 
complexdata structures out of lists. 

For example, we can make a list of two vectors: 

list(1:3, 5:8) 

## [[1]] 
## [1] 1 2 3 
## 

## [[2]] 

## [1] 5 6 7 8 

Notice how the vectors do not get concatenated like they would if we combined them with c(). The 
result of this command is a list of two elements that happens to be both vectors. 

They didn’t have to have the same type either, we could make a list like this, which also consist of 

two vectors but vectors of different types: 

list(1:3, c(TRUE, FALSE)) 

## [[1]] 

## [1] 1 2 3 
## 

## [[2]] 

## [1] TRUE FALSE 

You can flatten a list into a vector using the function unlist(). This will force the elements in the list 

to be converted into the same type, of course, since that is required of vectors. 

unlist(list(1:4, 5:7)) 

## [1] 1 2 3 4 5 6 7 

Indexing 

We saw basic indexing in Chapter 1, but there is much more to indexing in R that that. Type ?`[[` 

into the R prompt and prepare to be amazed. We have already seen the basic indexing. If you want 

the nth element of a vector v, you use v[n]: 

v <- 1:4 

v[2] 

## [1] 2 

You also know that you can get a subsequence out of the vector using a range 

of indices: 

v[2:3] 

## [1] 2 3 
Here we are indexing with positive numbers, which makes sense since the elements in the vector 

have positive indices, but it is also possible to use negative numbers to index in R. If you do that it 

is interpreted as specifying the complement of the values you want. So if you want all elements 

except the first element, you can use: 

You can also use multiple negative indices to remove some values: 

v[-(1:2)] 

## [1] 3 4 

Another way to index is to use a Boolean vector. This vector should be the same length as the 

vector you index into, and it will pick out the elements where the Boolean vector is true. 

v[v %% 2 == 0] 

## [1] 2 4 

If you want to assign to a vector you just assign to elements you index; as long as the vector to the 

right of the assignment operator has the same length as the elements the indexing pulls out you will 

be assigning 

to the vector. 

v[v %% 2 == 0] <- 13 
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v 

## [1] 1 13 3 13 

If the vector has more than one dimension—remember that matrices and arrays are really just 

vectors with more dimensions—then you subset them by subsetting each dimension. If you leave 

out a dimension, you will get whole range of values in that dimension, which is a simple way to of 

getting rows and columns of 

a matrix: 

m <- matrix(1:6, nrow = 2, byrow = TRUE) 

m 

## [,1] [,2] [,3] 

## [1,] 1 2 3 
## [2,] 4 5 6 

m[1,] 

## [1] 1 2 3 

m[,1] 

## [1] 1 4 

 
You can also index out a submatrix this way by providing ranges in one or more dimensions: 

m[1:2,1:2] 

## [,1] [,2] 

## [1,] 1 2 

## [2,] 4 5 

If you want to get to the actual element in there, you need to use the [[]] operator instead. 

L <- list(1,2,3) 

L[[1]] 

## [1] 1 

Named Values 

The elements in a vector or a list can have names. These are attributes that do not affect the values 

of the 

elements but can be used to refer to them. You can set these names when you create the vector or 

list: 

v <- c(a = 1, b = 2, c = 3, d = 4) 

v 

## a b c d 

## 1 2 3 4 

L <- list(a = 1:5, b = c(TRUE, FALSE)) 

L 

## $a 
## [1] 1 2 3 4 5 
## 

## $b 

## [1] TRUE FALSE 
Or you can set the names using the names<- function. That weird name, by the way, means that you 
are dealing with the names() function combined with assignment: 

names(v) <- LETTERS[1:4] 

v 
## A B C D 
## 1 2 3 4 

You can use names to index vectors and lists (where the [] and [[]] returns either a list or the 
element of the list, as before): 

v["A"] 

## A 
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## 1 

L["a"] 

## $a 

## [1] 1 2 3 4 5 

L[["a"]] 

## [1] 1 2 3 4 5 

 

Factors 
In the first step, 

1. we create a vector. 
2. Next step is to convert the vector into a factor, 

R provides factor() function to convert the vector into factor. There is the following syntax 

offactor() function 

factor_data<- factor(vector) 

data<- 

c("Shubham","Nishka","Arpita","Nishka","Shubham","Sumit","Nishka","Shubham","Sumit 

","Arpita","Sumit") 

print(data) 

print(is.factor(data)) 

output:[1] "Shubham""Nishka""Arpita""Nishka""Shubham""Sumit""Nishka" 

[8] "Shubham""Sumit""Arpita""Sumit" 

[1] FALSE 

[1] Shubham Nishka Arpita Nishka Shubham Sumit Nishka Shubham Sumit 
[10] Arpita Sumit 

Levels: Arpita Nishka Shubham Sumit 

[1] TRUE 

Accessing components of factor 

Like vectors, we can access the components of factors. The process of accessing components of 

factor is much more similar to the vectors. We can access the element with the help of the indexing 

method or using logical vectors. Let's see an example in which we understand the different-different 

ways of accessing the components. 

# Creating a vector as input. 

data <- 

c("Shubham","Nishka","Arpita","Nishka","Shubham","Sumit","Nishka","Shubham","Sumit","Arpit 

a","Sumit") 

factor_data<- factor(data) 

print(factor_data) 

print(factor_data[4]) 

print(factor_data[c(5,7)]) 

print(factor_data[-4]) 

print(factor_data[c(TRUE,FALSE,FALSE,FALSE,TRUE,TRUE,TRUE,FALSE,FALSE,FALSE,T 

RUE)]) 
 

[1] Shubham Nishka Arpita Nishka Shubham Sumit Nishka Shubham Sumit 

[10] Arpita Sumit 

Levels: Arpita Nishka Shubham Sumit 

[1] Nishka 

Levels: Arpita Nishka Shubham Sumit 

[1] Shubham Nishka 

Levels: Arpita Nishka Shubham Sumit 
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[1] Shubham Nishka Arpita Shubham Sumit Nishka Shubham Sumit Arpita 

[10] Sumit 

Levels: Arpita Nishka Shubham Sumit 

[1] Shubham Shubham Sumit Nishka Sumit 

Levels: Arpita Nishka Shubham Sumit 

Modification of factor 

Like data frames, R allows us to modify the factor. We can modify the value of a factor by simply 

re-assigning it. In R, we cannot choose values outside of its predefined levels means we cannot 

insert value if it's level is not present on it. For this purpose, we have to create a level of that value, 

and then we can add it to our factor. 

data <- c("Shubham","Nishka","Arpita","Nishka","Shubham") 
factor_data<- factor(data) 

print(factor_data) 

factor_data[4] <-"Arpita" 

print(factor_data) 

factor_data[4] <- "Gunjan" 

print(factor_data) 

levels(factor_data) <- c(levels(factor_data),"Gunjan") 

factor_data[4] <- "Gunjan" 

print(factor_data) 
 

[1] Shubham Nishka Arpita Nishka Shubham 

Levels: Arpita Nishka Shubham 

[1] Shubham Nishka Arpita Arpita Shubham 

Levels: Arpita Nishka Shubham 

Warning message: 

In ̀ [<-.factor`(`*tmp*`, 4, value = "Gunjan") : 

invalid factor level, NA generated 

[1] Shubham Nishka Arpita <NA> Shubham 

Levels: Arpita Nishka Shubham 

[1] Shubham Nishka Arpita Gunjan Shubham 

Levels: Arpita Nishka Shubham Gunjan 

 

Generating Factor Levels 
R provides gl() function to generate factor levels. This function takes three arguments i.e., n, k, and 

labels. Here, n and k are the integers which indicate how many levels we want and how many times 

each level is required. 

There is the following syntax of gl() function which is as follows 

1. gl(n, k, labels) 

1. n indicates the number of levels. 

2. k indicates the number of replications. 

3. labels is a vector of labels for the resulting factor levels. 

Example 

1. gen_factor<- gl(3,5,labels=c("BCA","MCA","B.Tech")) 

2. gen_factor 

Output 

[1] BCA BCA BCA BCA BCA MCA MCA MCA MCA MCA 

[11] B.Tech B.Tech B.Tech B.Tech B.Tech 

Levels: BCA MCA B.Tech 

height <- c(132,151,162,139,166,147,122) 
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weight <- c(48,49,66,53,67,52,40) 

gender <- c("male","male","female","female","male","female","male") 

input_data <- data.frame(height,weight,gender) 

print(input_data) 

print(is.factor(input_data$gender)) 

print(input_data$gender) 

When we execute the above code, it produces the following result − 

height weight gender 
 

1 132 48 male 

2 151 49 male 

3 162 66 female 

4 139 53 female 
5 166 67 male 
6 147 52 female 

7 122 40 male 

[1] TRUE 

[1] male male female female male female male 

Levels: female male 

Changing the Order of Levels 
The order of the levels in a factor can be changed by applying the factor function again with new 

order of the levels. 

data <- c("East","West","East","North","North","East","West", 

"West","West","East","North") 

factor_data <- factor(data) 

print(factor_data) 

new_order_data <- factor(factor_data,levels = c("East","West","North")) 

print(new_order_data) 

When we execute the above code, it produces the following result − 

[1] East West East North North East West West West East North 

Levels: East North West 

[1] East West East North North East West West West East North 

Levels: East West North 

 

Subsetting R Objects 
There are three operators that can be used to extract subsets of R objects. 

 The [ operator always returns an object of the same class as the original. It can be used to 

select multiple elements of an object 

 The [[ operator is used to extract elements of a list or a data frame. It can only be used to 

extract a single element and the class of the returned object will not necessarily be a list or 

data frame. 

 The $ operator is used to extract elements of a list or data frame by literal name. Its 

semantics are similar to that of [[. 

Subsetting a Vector 
Vectors are basic objects in R and they can be subsetted using the [ operator. 

 
> x <- c("a", "b", "c", "c", "d", "a") 

> x[1] ## Extract the first element 

[1] "a" 

> x[2] ## Extract the second element 
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[1] "b" 

The [ operator can be used to extract multiple elements of a vector by passing the operator an 

integer sequence. Here we extract the first four elements of the vector. 

 

> x[1:4] 

[1] "a""b""c""c" 

 
The sequence does not have to be in order; you can specify any arbitrary integer vector. 

 
> x[c(1, 3, 4)] 

[1] "a""c""c" 

We can also pass a logical sequence to the [ operator to extract elements of a vector that satisfy a 

given condition. For example, here we want the elements of x that come lexicographically after the 

letter “a”. 

> u <- x >"a" 

> u 

[1] FALSE TRUE TRUE TRUE TRUE FALSE 

> x[u] 

[1] "b""c""c""d" 

Another, more compact, way to do this would be to skip the creation of a logical vector and just 

subset the vector directly with the logical expression 

> x[x >"a"] 

[1] "b""c""c""d" 

 

Subsetting a Matrix 

 
Matrices can be subsetted in the usual way with (i,j) type indices. Here, we create simple 2×3 

matrix with the matrix function. 

 
> x <- matrix(1:6, 2, 3) 

> x 

[,1] [,2] [,3] 

[1,] 1 3 5 

[2,] 2 4 6 

We can access the (1,2) 

or the (2,1) 

element of this matrix using the appropriate indices. 

 
> x[1, 2] 

[1] 3 

> x[2, 1] 

[1] 2 

Indices can also be missing. This behavior is used to access entire rows or columns of a matrix. 

 
> x[1, ] ## Extract the first row 

[1] 1 3 5 

> x[, 2] ## Extract the second column 

[1] 3 4 
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Subsetting Lists 
Lists in R can be subsetted using all three of the operators mentioned above, and all three are used 

for different purposes. 

 
> x <- list(foo = 1:4, bar = 0.6) 

> x 

$foo 

[1] 1 2 3 4 

 

$bar 

[1] 0.6 

The [[ operator can be used to extract single elements from a list. Here we extract the first element 

of the list. 

> x[[1]] 

[1] 1 2 3 4 

The [[ operator can also use named indices so that you don’t have to remember the exact ordering of 

every element of the list. You can also use the $ operator to extract elements by name. 

 
> x[["bar"]] 

[1] 0.6 

> x$bar 

[1] 0.6 

Notice you don’t need the quotes when you use the $ operator. 

One thing that differentiates the [[ operator from the $ is that the [[ operator can be used with 

computed indices. The $ operator can only be used with literal names. 

> x <- list(foo = 1:4, bar = 0.6, baz = "hello") 

> name <- "foo" 
>  
> ## computed index for "foo" 

> x[[name]] 

[1] 1 2 3 4 

 

> ## element "name" doesn’t exist! (but no error here) 

> x$name 

NULL 

>  
> ## element "foo" does exist 

> x$foo 

[1] 1 2 3 4 

 

Partial Matching 

Partial matching of names is allowed with [[ and $. This is often very useful during interactive work 

if the object you’re working with has very long element names. You can just abbreviate those names 

and R will figure out what element you’re referring to. 

> x <- list(aardvark = 1:5) 

> x$a 

[1] 1 2 3 4 5 
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> x[["a"]] 

NULL 

 

> x[["a", exact = FALSE]] 

[1] 1 2 3 4 5 
>  

Removing NA Values 

A common task in data analysis is removing missing values (NAs). 

> x <- c(1, 2, NA, 4, NA, 5) 

> bad <- is.na(x) 

> print(bad) 

[1] FALSE FALSE TRUE FALSE TRUE FALSE 

> x[!bad] 

[1] 1 2 4 5 

What if there are multiple R objects and you want to take the subset with no missing values in any 

of those objects? 

> x <- c(1, 2, NA, 4, NA, 5) 

> y <- c("a", "b", NA, "d", NA, "f") 
> good <- complete.cases(x, y) 

> good 

[1] TRUE TRUE FALSE TRUE FALSE TRUE 

> x[good] 

[1] 1 2 4 5 

> y[good] 

[1] "a""b""d""f" 

Control Structures 

if condition 
This control structure checks the expression provided in parenthesis is true or not. If true, the 

execution of the statements in braces {} continues. 

 

 
 

Syntax: 

if(expression) 

{ 

statements 

.... 

.... 

} 

Example: 

x <-100 

if(x > 10){ 

print(paste(x, "is greater than 10")) 

} 

 

Output: 

[1] "100 is greater than 10" 
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if-else condition 
 

It is similar to if condition but when the test expression in if condition fails, then statements in else 

condition are executed. 

Syntax: 

if(expression) 

{ 

statements 

.... 

.... 

} 

else 

{ 

statements 

.... 

.... 

} 

 

Example: 

x <-5 

# Check value is less than or greater than 10if(x > 10){ 

print(paste(x, "is greater than 10")) 

}else{ 

print(paste(x, "is less than 10")) 

} 

 
Output: 

[1] "5 is less than 10" 

for loop 

It is a type of loop or sequence of statements executed repeatedly until exit condition is reached. 

Syntax: 

for(value in vector) 

{ 

statements 

.... 

.... 

} 

Example: 

x <-letters[4:10] 

 

for(i inx){ 

print(i) 

} 

Output: 

[1] "d" 

[1] "e" 

[1] "f" 

[1] "g" 

[1] "h" 
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[1] "i" 

[1] "j" 
 

Nested loops 
Nested loops are similar to simple loops. Nested means loops inside loop. Moreover, nested loops 

are used to manipulate the matrix. 

for(i in1:3) 

{ 

 

for(j in1:5) 

{ 
 

print(paste("This is iteration i =", i, "and j =", j))# Some output 

} 

} 

# [1] "This is iteration i = 1 and j = 1" 

# [1] "This is iteration i = 1 and j = 2" 

# [1] "This is iteration i = 1 and j = 3" 

# [1] "This is iteration i = 1 and j = 4" 

# [1] "This is iteration i = 1 and j = 5" 

# [1] "This is iteration i = 2 and j = 1" 

# [1] "This is iteration i = 2 and j = 2" 

# [1] "This is iteration i = 2 and j = 3" 

# [1] "This is iteration i = 2 and j = 4" 

# [1] "This is iteration i = 2 and j = 5" 

# [1] "This is iteration i = 3 and j = 1" 

# [1] "This is iteration i = 3 and j = 2" 

# [1] "This is iteration i = 3 and j = 3" 

# [1] "This is iteration i = 3 and j = 4" 

# [1] "This is iteration i = 3 and j = 5" 

 
while loop 
while loop is another kind of loop iterated until a condition is satisfied. The testing expression is 

checked first before executing the body of loop. 

Syntax: 

while(expression) 

{ 

statement 

.... 

.... 

} 

Example: 

x =1 

 

# Print 1 to 5 

while(x <=5){ 

print(x) 
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x =x +1 

} 
 

Output: 

[1] 1 

[1] 2 

[1] 3 

[1] 4 

[1] 5 
 

repeat loop and break statement 
repeat is a loop which can be iterated many number of times but there is no exit condition to come 

out from the loop. So, break statement is used to exit from the loop. break statement can be used in 

any type of loop to exit from the loop. 

Syntax: 

repeat { 

statements 

.... 

.... 
if(expression) { 
break 

} 

} 

Example: 

x =1 

 

# Print 1 to 5 

repeat{ 

print(x) 

x =x +1 

if(x > 5){ 

break 

} 

} 

 
Output: 

[1] 1 

[1] 2 

[1] 3 

[1] 4 

[1] 5 
 

next statement 
next statement is used to skip the current iteration without executing the further statements and 

continues the next iteration cycle without terminating the loop. 



Data Science A.Y. 2024-2025 

Department of CSE Page 22 

 

 

Example: 

 
# Defining vector 

x <-1:10 
 

# Print even numbers 

for(i inx){ 

if(i%%2!=0){ 

next#Jumps to next loop 

} 

print(i) 

} 
 

Output: 

[1] 2 

[1] 4 

[1] 6 

[1] 8 

[1] 10 

 

Functions 

name <- function(arguments) expression 

Where name can be any variable name, arguments is a list of formal arguments to the function, and 

expression is what the function will do when you call it. It says expression because you might as 

well think 

about the body of a function as an expression, but typically it is a sequence of statements enclosed 

by curly 

brackets: 

name <- function(arguments) { statements } 

It is just that such a sequence of statements is also an expression; the result of executing a series of 

statements is the value of the last statement. 

The following function will print a statement and return 5 because the statements in the function 

bodyare first a print statement and then just the value 5 that will be the return value of the function:f 

<- function() 

{ 

print("hello, world") 

5 

} 

f() 

## [1] "hello, world" 

## [1] 5 

 
plus <- function(x, y) { 

print(paste(x, "+", y, "is", x + y)) 

x + y 

} 
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div <- function(x, y) { 

print(paste(x, "/", y, "is", x / y)) 

x / y 

} 

plus(2, 2) 

## [1] "2 + 2 is 4" 

## [1] 4 

div(6, 2) 

## [1] "6 / 2 is 3" 

## [1] 3 

 
 

Named Arguments 
In the above function calls, the argument matching of formal argument to the actual 

arguments takes place in positional order. 

This means that, in the call pow(8,2), the formal arguments x and y are assigned 8 

and 2 respectively. 

We can also call the function using named arguments. 

When calling a function in this way, the order of the actual arguments doesn't matter. 

For example, all of the function calls given below are equivalent. 

> pow(8, 2) 

[1] "8 raised to the power 2 is 64" 

> pow(x = 8, y = 2) 

[1] "8 raised to the power 2 is 64" 

> pow(y = 2, x = 8) 

[1] "8 raised to the power 2 is 64" 

Furthermore, we can use named and unnamed arguments in a single call. 

In such case, all the named arguments are matched first and then the remaining 

unnamed arguments are matched in a positional order. 

> pow(x=8, 2) 

[1] "8 raised to the power 2 is 64" 

> pow(2, x=8) 

[1] "8 raised to the power 2 is 64" 

In all the examples above, x gets the value 8 and y gets the value 2. 

Default Values for Arguments 

We can assign default values to arguments in a function in R. 

This is done by providing an appropriate value to the formal argument in the function 

declaration. 

Here is the above function with a default value for y. 

pow <- function(x, y = 2) { 

# function to print x raised to the power y 

result <- x^y 

print(paste(x,"raised to the power", y, "is", result)) 

} 

The use of default value to an argument makes it optional when calling the function. 

> pow(3) 

[1] "3 raised to the power 2 is 9" 
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> pow(3,1) 

[1] "3 raised to the power 1 is 3" 

Here, y is optional and will take the value 2 when not provided. 

 

Return Value from R Function 

Method 1: R function with return value 

In this scenario, we will use the return statement to return some value 

Syntax: 

 
function_name <- function(parameters) 

{ 

statements 

return(value) 

} 

function_name(values) 

Where, 
 

 function_name is the name of the function 

 parameters are the values that are passed as arguments 

 return() is used to return a value 

 function_name(values) is used to pass values to the parameters 

addition= function(val1,val2) 

{ 

add=val1+val2 

return(add) 

} 

addition(10,20) 

 
Output: 

[1] 30 
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Method 2: R function to return multiple values as a list 

In this scenario, we will use the list() function in the return statement to return multiple values. 

Syntax: 

function_name <- function(parameters) { 

statements 

return(list(value1,value2,.,value n) 

} 

function_name(values) 

where, 

 function_name is the name of the function 

 parameters are the values that are passed as arguments 

 return() function takes list of values as input 

 function_name(values) is used to pass values to the parameters 

Example: R program to perform arithmetic operations and return those values 

arithmetic = function(val1,val2) 

{ 

add=val1+val2 

sub=val1-val2 

mul=val1*val2 

div=val2/val1 

return(list(add,sub,mul,div)) 

} 

arithmetic(10,20) 

Output: 

[[1]] 

[1] 30 

 

[[2]] 

[1] -10 

 

[[3]] 

[1] 200 
 

[[4]] 

[1] 
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UNIT – II 

Loading, Exploring and Managing Data 
Working with data from files: Reading and Writing Data, Reading Data Files with read.table (), 

Reading in Larger Datasets with read.table. Working with relational databases. Data manipulation 

packages: dplyr, data.table, reshape2, tidyr, lubridate. 

 

Reading and Writing Data 

One of the important formats to store a file is in a text file. R provides various methods that one can 

read data from a text file. 

 read.delim(): This method is used for reading “tab-separated value” files (“.txt”). By default, 

point (“.”) is used as decimal points. 

syntax: read.delim(file, header = TRUE, sep = “\t”, dec = “.”, …) 

myData = read.delim("1.txt", header = FALSE) 

print(myData) 

Output: 

1 A computer science portal. 

 read.delim2(): This method is used for reading “tab-separated value” files (“.txt”). By 

default, point (“,”) is used as decimal points. 

Syntax: read.delim2(file, header = TRUE, sep = “\t”, dec = “,”, …) 

myData = read.delim2("1.txt",header= 

FALSE) 

print(myData) 

 file.choose(): In R it’s also possible to choose a file interactively using the function file.choose. 

 
myFile = read.delim(file.choose(), header = FALSE) 

print(myFile) 

Output: 

1 A computer science portal. 

 read_tsv(): This method is also used for to read a tab separated (“\t”) values by using the 

help of readr package. 

Syntax: read_tsv(file, col_names = TRUE) 

library(readr) 

myData = read_tsv("1.txt", col_names = 
FALSE)print(myData) 

Output: 

# A 

tibble: 1 

x 1 

X1 

1 A computer science portal . 
 

Reading one line at a time 

 read_lines(): This method is used for the reading line of your own choice whether it’s one or 

two orten lines at a time. To use this method we have to import reader package. 

Syntax: read_lines(file, skip = 0, n_max = -1L) 

library(readr) 

myData = read_lines("1.txt", n_max 

= 1) print(myData) 

myData = read_lines("1.txt", n_max = 2) 
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print(myData) 

 
Output: 

[1] "c." 

[1] "c++" 

[2] "java" 

Reading the whole file 

 read_file(): This method is used for reading the whole file. To use this method we have to 

importreader package. 

Syntax: 

read_lines(file)file: 
the file path 
library(readr) 

myData = read_file("1.txt") 

print(myData) 

Output: 

[1] “cc++java” 

 

Reading a file in a table format 
 

Another popular format to store a file is in a tabular format. R provides various methods that one 

can read data from a tabular formatted data file. 

 read.table(): read.table() is a general function that can be used to read a file in table 

format. Thedata will be imported as a data frame. 

Syntax: read.table(file, header = FALSE, sep = “”, dec = “.”) 

myData = 

read.table("basic.csv") 
print(myData) 

 
Output: 

1 Name,Age,Qualification,Address 

2 Amiya,18,MCA,BBS 

3 Niru,23,Msc,BLS 

4 Debi,23,BCA,SBP 

5 Biku,56,ISC,JJP 

 

 read.csv(): read.csv() is used for reading “comma separated value” files (“.csv”). In this also 

thedata will be imported as a data frame. 

Syntax: read.csv(file, header = TRUE, sep = “,”, dec = 

“.”, …)myData = read.csv("basic.csv") 

print(myData) 
 

Output: 

Name Age Qualification 

Address 

1 Amiya 18 MCA BBS 

2 Niru 23 Msc BLS 

3 Debi 23 BCA SBP 

4 Biku 56 ISC JJP 

 read.csv2(): read.csv() is used for variant used in countries that use a comma “,” as decimal 

pointand a semicolon “;” as field separators. 

Syntax: read.csv2(file, header = TRUE, sep = “;”, dec = “,”, …) 

myData = read.csv2("basic.csv") 
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print(myData) 

Output: 

Name.Age.Qualification.Address 

1 Amiya,18,MCA,BBS 

2 Niru,23,Msc,BLS 

3 Debi,23,BCA,SBP 

4 Biku,56,ISC,JJP 
 

 file.choose(): You can also use file.choose() with read.csv() just like before. 

 
myData = 
read.csv(file.choose()) 

print(myData) 

 

Output: 

Name Age Qualification 

Address 

1 Amiya 18 MCA BBS 

2 Niru 23 Msc BLS 

3 Debi 23 BCA SBP 
4 Biku 56 ISC JJP 

 
 read_csv(): This method is also used for to read a comma (“,”) separated values by using 

the helpof readr package. 

Syntax: read_csv(file, col_names = TRUE) 
library(readr) 

myData = read_csv("basic.csv", col_names = TRUE) 

print(myData) 
 

Output: 

Parsed with column specification: 

cols(Name = col_character(),Age 

= col_double(), Qualification = 

col_character(),Address = 

col_character()) 

 
# A tibble: 4 x 4 

Name Age Qualification Address 

1 Amiya 18 MCA BBS 

2 Niru 23 Msc BLS 

3 Debi 23 BCA SBP 

4 Biku 56 ISC JJP 

 

 

Reading a file from the internet 
 

It’s possible to use the functions read.delim(), read.csv() and read.table() to import files from the 

web. 

myData = read.delim("http://www.sthda.com/upload/boxplot_format.txt") 

print(head(myData)) 

 

Output: 

http://www.sthda.com/upload/boxplot_format.txt
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Nom variable Group 
1 IND1 10 A 

2 IND2 7 A 

3 IND3 20 A 

4 IND4 14 A 
5 IND5 14 A 
6 IND6 12 A 

 

Reading a CSV File 

Following is a simple example of read.csv() function to read a CSV file available in your current 

working directory − 

data <- read.csv("input.csv") 
print(data) 

When we execute the above code, it produces the following result − 

id, name, salary, start_date, dept 

1 1 Rick 623.30 2012-01-01 IT 
2 2 Dan 515.20 2013-09-23 Operations 

3 3 Michelle 611.00 2014-11-15 IT 
4 4 Ryan 729.00 2014-05-11 HR 

5 NA Gary 843.25 2015-03-27 Finance 

6 6 Nina 578.00 2013-05-21 IT 

7 7 Simon 632.80 2013-07-30 Operations 

8 8 Guru 722.50 2014-06-17 Finance 
 

Analyzing the CSV File 
 

By default the read.csv() function gives the output as a data frame. This can be easily checked as 

follows. Also we can check the number of columns and rows. 

data <- read.csv("input.csv") 

print(is.data.frame(data)) 

print(ncol(data)) 

print(nrow(data)) 

When we execute the above code, it produces the following result − 

[1] TRUE 

[1] 5 

[1] 8 

Once we read data in a data frame, we can apply all the functions applicable to data frames as 

explained in subsequent section. 

Get the maximum salary 

# Create a data frame. 

data <- read.csv("input.csv") 

# Get the max salary from data frame. 

sal <- max(data$salary) 

print(sal) 

When we execute the above code, it produces the following result − 

[1] 843.25 

Get the details of the person with max salary 

We can fetch rows meeting specific filter criteria similar to a SQL where clause. 

# Create a data frame. 

data <- read.csv("input.csv") 
# Get the max salary from data frame. 

sal <- max(data$salary) 
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# Get the person detail having max salary. 

retval <- subset(data, salary == max(salary)) 

print(retval) 

When we execute the above code, it produces the following result − 

id name salary start_date dept 

5 NA Gary 843.25 2015-03-27 Finance 
Get all the people working in IT department 

# Create a data frame. 

data <- read.csv("input.csv") 

retval <- subset( data, dept == "IT") 

print(retval) 

When we execute the above code, it produces the following result − 

id name salary start_date dept 

1 1 Rick 623.3 2012-01-01 IT 
3 3 Michelle 611.0 2014-11-15 IT 

6 6 Nina 578.0 2013-05-21 IT 

Get the persons in IT department whose salary is greater than 600 

data <- read.csv("input.csv") 

info <- subset(data, salary > 600 & dept == "IT") 

print(info) 

When we execute the above code, it produces the following result − 

id name salary start_date dept 

1 1 Rick 623.3 2012-01-01 IT 
3 3 Michelle 611.0 2014-11-15 IT 

Get the people who joined on or after 2014 

data <- read.csv("input.csv") 
retval <- subset(data, as.Date(start_date) > as.Date("2014-01-01")) 

print(retval) 

When we execute the above code, it produces the following result − 

id name salary start_date dept 

3 3 Michelle 611.00 2014-11-15 IT 
4 4 Ryan 729.00 2014-05-11 HR 

5 NA Gary 843.25 2015-03-27 Finance 
8 8 Guru 722.50 2014-06-17 Finance 

 

Writing into a CSV File 

 
R can create csv file form existing data frame. The write.csv() function is used to create the csv file. 

This file gets created in the working directory. 

data <- read.csv("input.csv") 
retval <- subset(data, as.Date(start_date) > as.Date("2014-01-01")) 

write.csv(retval,"output.csv") 

newdata <- read.csv("output.csv") 

print(newdata) 

When we execute the above code, it produces the following result − 

X id name salary start_date dept 

1 3 3 Michelle 611.00  2014-11-15 IT 

2 4 4 Ryan 729.00  2014-05-11 HR 
3 5 NA Gary 843.25  2015-03-27 Finance 
4 8 8 Guru 722.50  2014-06-17 Finance 
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Install xlsx Package 

You can use the following command in the R console to install the "xlsx" package. It may ask to 
install some additional packages on which this package is dependent. Follow the same commandwith required 

package name to install the additional packages. 

install.packages("xlsx") 

 

Verify and Load the "xlsx" Package 

Use the following command to verify and load the "xlsx" package. 

any(grepl("xlsx",installed.packages())) 

library("xlsx") 
When the script is run we get the following output. 

[1] TRUE 

Loading required package: rJava 

Loading required package: methods 

Loading required package: xlsxjars 

 

Input as xlsx File 

Open Microsoft excel. Copy and paste the following data in the work sheet named as sheet1. 

id 
1 

name 
Rick 

salary 
623.3 

start_date dept 
1/1/2012 

 

IT 

2 Dan 515.2 9/23/2013 Operations 

3 Michelle 611 11/15/2014 IT  

4 Ryan 729 5/11/2014 HR  

5 Gary 43.25 3/27/2015 Finance 

6 Nina 578 5/21/2013 IT  

7 Simon 632.8 7/30/2013 Operations 
8 Guru 722.5 6/17/2014 Finance 

Also copy and paste the following data to another worksheet and rename this worksheet to "city". 

name city 

Rick Seattle 
Dan Tampa 

Michelle Chicago 

Ryan  Seattle 

Gary Houston 

Nina Boston 

Simon Mumbai 

Guru Dallas 

Save the Excel file as "input.xlsx". You should save it in the current working directory of the R 

workspace. 

Reading the Excel File 
The input.xlsx is read by using the read.xlsx() function as shown below. The result is stored as a 

data frame in the R environment. 

data <- read.xlsx("input.xlsx", sheetIndex = 1) 

print(data) 

When we execute the above code, it produces the following result − 

 id, name, salary, start_date, dept  

1 1 Rick 623.30 2012-01-01 IT 
2 2 Dan 515.20 2013-09-23 Operations 

3 3 Michelle 611.00 2014-11-15 IT 

4 4 Ryan 729.00 2014-05-11 HR 

5 NA Gary 843.25 2015-03-27 Finance 

6 6 Nina 578.00 2013-05-21 IT 
7 7 Simon 632.80 2013-07-30 Operations 
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8 8 Guru 722.50 2014-06-17 Finance 
 

 

XML is a file format which shares both the file format and the data on the World Wide Web, 

intranets, and elsewhere using standard ASCII text. It stands for Extensible Markup Language 

(XML). Similar to HTML it contains markup tags. But unlike HTML where the markup tag 

describes structure of the page, in xml the markup tags describe the meaning of the data contained 

into the file. 

install.packages("XML") 

Input Data 

Create a XMl file by copying the below data into a text editor like notepad. Save the file with a .xml 

extension and choosing the file type as all files(*.*). 

<RECORDS> 

<EMPLOYEE> 

<ID>1</ID> 
<NAME>Rick</NAME> 

<SALARY>623.3</SALARY> 

<STARTDATE>1/1/2012</STARTDATE> 

<DEPT>IT</DEPT> 

</EMPLOYEE> 

 

<EMPLOYEE> 

<ID>2</ID> 

<NAME>Dan</NAME> 

<SALARY>515.2</SALARY> 

<STARTDATE>9/23/2013</STARTDATE> 

<DEPT>Operations</DEPT> 

</EMPLOYEE> 

 

<EMPLOYEE> 

<ID>3</ID> 

<NAME>Michelle</NAME> 

<SALARY>611</SALARY> 

<STARTDATE>11/15/2014</STARTDATE> 

<DEPT>IT</DEPT> 

</EMPLOYEE> 

 

<EMPLOYEE> 

<ID>4</ID> 

<NAME>Ryan</NAME> 

<SALARY>729</SALARY> 

<STARTDATE>5/11/2014</STARTDATE> 

<DEPT>HR</DEPT> 

</EMPLOYEE> 

 

<EMPLOYEE> 

<ID>5</ID> 

<NAME>Gary</NAME> 

<SALARY>843.25</SALARY> 

<STARTDATE>3/27/2015</STARTDATE> 

<DEPT>Finance</DEPT> 

</EMPLOYEE> 

 

<EMPLOYEE> 

<ID>6</ID> 
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<NAME>Nina</NAME> 

 

<SALARY>578</SALARY> 

<STARTDATE>5/21/2013</STARTDATE> 

<DEPT>IT</DEPT> 

</EMPLOYEE> 

 

<EMPLOYEE> 

<ID>7</ID> 
<NAME>Simon</NAME> 

<SALARY>632.8</SALARY> 

<STARTDATE>7/30/2013</STARTDATE> 
<DEPT>Operations</DEPT> 

</EMPLOYEE> 

 

<EMPLOYEE> 

<ID>8</ID> 

<NAME>Guru</NAME> 

<SALARY>722.5</SALARY> 

<STARTDATE>6/17/2014</STARTDATE> 

<DEPT>Finance</DEPT> 

</EMPLOYEE> 

 

</RECORDS> 

 
 

Reading XML File 

The xml file is read by R using the function xmlParse(). It is stored as a list in R. 

library("XML") 

library("methods") 
result <- xmlParse(file = "input.xml") 

print(result) 

When we execute the above code, it produces the following result – 

1 Rick 623.3 1/1/2012 IT 

 
2 Dan 515.2 9/23/2013 Operations 

3 Michelle611 11/15/2014 IT 

4Ryan 729 5/11/2014 HR 

5Gary 843.253/27/2015Finance 

6Nina  5785/21/2013 IT 

7Simon 632.87/30/2013Operations 

8Guru722.5 6/17/2014Finance 

 

Get Number of Nodes Present in XML File 

# Load the packages required to read XML files. 

library("XML") 
library("methods") 
# Give the input file name to the function. 

result <- xmlParse(file = "input.xml") 

# Exract the root node form the xml file 

rootnode <- xmlRoot(result) 

# Find number of nodes in the root. 
rootsize <- xmlSize(rootnode) 

# Print the result. 
print(rootsize) 
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When we execute the above code, it produces the following result − 

 
 

Output 

[1] 8 

 

Details of the First Node 

 
Let's look at the first record of the parsed file. It will give us an idea of the various elements present 

in the top level node. 

# Load the packages required to read XML files. 
library("XML") 

library("methods") 

# Give the input file name to the function. 

result <- xmlParse(file = "input.xml") 

# Exract the root node form the xml file. 

rootnode <- xmlRoot(result) 

# Print the result. 

print(rootnode[1]) 

When we execute the above code, it produces the following result − 

$EMPLOYEE 

1 Rick 623.3 

1/1/2012 IT 

attr(,"class") 

[1] "XMLInternalNodeList" "XMLNodeList" 

 

Get Different Elements of a Node 

 

# Load the packages required to read XML files. 

library("XML") 

library("methods") 

# Give the input file name to the function. 

result <- xmlParse(file = "input.xml") 

# Exract the root node form the xml file. 

rootnode <- xmlRoot(result) 

# Get the first element of the first node. 

print(rootnode[[1]][[1]]) 

# Get the fifth element of the first node. 

print(rootnode[[1]][[5]]) 

# Get the second element of the third node. 

print(rootnode[[3]][[2]]) 

When we execute the above code, it produces the following result – 

1 IT Michelle 

JSON file stores data as text in human-readable format. Json stands for JavaScript Object Notation. 

R can read JSON files using the rjson package. 

Install rjson Package 

In the R console, you can issue the following command to install the rjson package. 

install.packages("rjson") 

Input Data 

Create a JSON file by copying the below data into a text editor like notepad. Save the file with 

a .json extension and choosing the file type as all files(*.*). 

{ 
"ID":["1","2","3","4","5","6","7","8" ], 

"Name":["Rick","Dan","Michelle","Ryan","Gary","Nina","Simon","Guru" ], 
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"Salary":["623.3","515.2","611","729","843.25","578","632.8","722.5" ], 
 
 

"StartDate":[ "1/1/2012","9/23/2013","11/15/2014","5/11/2014","3/27/2015","5/21/2013", 

"7/30/2013","6/17/2014"], 

"Dept":[ "IT","Operations","IT","HR","Finance","IT","Operations","Finance"] 

} 
 

Read the JSON File 

The JSON file is read by R using the function from JSON(). It is stored as a list in R. 

# Load the package required to read JSON files. 

library("rjson") 
# Give the input file name to the function. 

result <- fromJSON(file = "input.json") 
# Print the result. 

print(result) 

When we execute the above code, it produces the following result − 

$ID 

[1] "1"  "2"  "3" "4"  "5"  "6" "7"  "8" 

$Name 

[1] "Rick" "Dan" "Michelle" "Ryan" "Gary" "Nina" "Simon" "Guru" 
$Salary 

[1] "623.3" "515.2" "611" "729" "843.25" "578" "632.8" "722.5" 

$StartDate 

[1] "1/1/2012" "9/23/2013" "11/15/2014" "5/11/2014" "3/27/2015" "5/21/2013" 

"7/30/2013" "6/17/2014" 

 

$Dept 

[1] "IT" "Operations" "IT" "HR" "Finance" "IT" 

"Operations" "Finance" 

 

Convert JSON to a Data Frame 

We can convert the extracted data above to a R data frame for further analysis using the 

as.data.frame() function. 

# Load the package required to read JSON files. 

library("rjson") 

# Give the input file name to the function. 
result <- fromJSON(file = "input.json") 

# Convert JSON file to a data frame. 

json_data_frame <- as.data.frame(result) 

print(json_data_frame) 

When we execute the above code, it produces the following result − 

id, name, salary, start_date, dept 

1 1 Rick 623.30 2012-01-01 IT 
2 2 Dan 515.20 2013-09-23 Operations 

3 3 Michelle 611.00 2014-11-15 IT 

4 4 Ryan 729.00 2014-05-11 HR 

5 NA Gary 843.25 2015-03-27 Finance 

6 6 Nina 578.00 2013-05-21 IT 
7 7 Simon 632.80 2013-07-30 Operations 

8 8 Guru 722.50 2014-06-17 Finance 

 

Reading in Larger Datasets with read.table 

 

R is known to have difficulties handling large data files. Here we will explore some tips that make 
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working with such files in R less painfull. 

 If you can comfortably work with the entire file in memory, but reading the file is rather 

 
slow, consider using the data.table package and read the file with its fread function. 

 If your file does not comfortably fit in memory: 

 Use sqldf if you have to stick to csv files. 

 Use a SQLite database and query it using either SQL queries or dplyr. 

 Convert your csv file to a sqlite database in order to query 
 

Loading a large dataset: use fread() or functions from readr instead of read.xxx(). 

library("data.table") 

library("readr") 

To read an entire csv in memory, by default, R users use the read.table method or variations thereof 

(such as read.csv). However, fread from the data.table package is a lot faster. Furthermore, the readr 

package also provides more optimized reading functions (read_csv, read_delim,…). Let’s measure 

the time to read in the data using these three different methods. 

read.table.timing <- system.time(read.table(csv.name, header = TRUE, sep = ",")) 

readr.timing <- system.time(read_delim(csv.name, ",", col_names = TRUE)) 

data.table.timing <- system.time(allData <- fread(csv.name, showProgress = FALSE)) 

data <- data.frame(method = c('read.table', 'readr', 'fread'), 

timing = c(read.table.timing[3], readr.timing[3], data.table.timing[3])) 

## 1 read.table 183.732 

## 2 readr 3.625 

## 3 fread 12.564 

 
Data files that don’t fit in memory 

If you are not able to read in the data file, because it does not fit in memory (or because R becomes 

too slow when you load the entire dataset), you will need to limit the amount of data that will 

actually be stored in memory. There are a couple of options which we will investigate: 

1. limit the number of lines you are trying to read for some exploratory analysis. Once you are 

happy with the analysis you want to run on the entire dataset, move to another machine. 

2. limit the number of columns you are reading to reduce the memory required to store the data. 

3. limit both the number of rows and the number of columns using sqldf. 

4. stream the data. 

1. Limit the number of lines you read (fread) 

Limiting the number of lines you read is easy. Just use the nrows and/or skip option (available to 

both read.table and fread). skip can be used to skip a number of rows, but you can also pass a string 

to this parameter causing fread to only start reading lines from the first line matching that string. 

Let’s say we only want to start reading lines after we find a line matching the pattern 2015-06-12 

15:14:39. We can do that like this: 

sprintf("Number of lines in full data set: %s", nrow(allData)) 

## [1] "Number of lines in full data set: 3761058" 

subSet <- fread(csv.name, skip = "2015-06-12 15:14:39", showProgress = FALSE) 

sprintf("Number of lines in data set with skipped lines: %s", nrow(subSet)) 

## [1] "Number of lines in data set with skipped lines: 9998" 

Skipping rows this way is obviously not giving you the entire dataset, so this strategy is only useful 

for doing exploratory analysis on a subset of your data. Note that also read_delim provides a n_max 

argument to limit the number of lines to read. If you want to explore the whole dataset, limiting the 

https://inbo.github.io/tutorials/tutorials/r_large_data_files_handling/#loadentire
https://inbo.github.io/tutorials/tutorials/r_large_data_files_handling/#loadentire
https://inbo.github.io/tutorials/tutorials/r_large_data_files_handling/#loadentire
https://inbo.github.io/tutorials/tutorials/r_large_data_files_handling/#sqldftit
https://inbo.github.io/tutorials/tutorials/r_large_data_files_handling/#sqldftit
https://inbo.github.io/tutorials/tutorials/r_large_data_files_handling/#sqlitestrat
https://inbo.github.io/tutorials/tutorials/r_large_data_files_handling/#dplyrstrat
https://inbo.github.io/tutorials/tutorials/r_large_data_files_handling/#convertsqlite
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number of columns you read can be a more useful strategy. 

2. Limit the number of columns you read (fread) 

 
If you only need 4 columns of the 21 columns present in the file, you can tell fread to only select 

those 4. This can have a major impact on the memory footprint of your data. The option you need 

for this is: select. With this, you can specify a number of columns to keep. The opposite - specifying 

the columns you want to drop - can be accomplished with the drop option. 

fourColumns = fread(csv.name, select = c("device_info_serial", "date_time", "latitude", 

"longitude"), 

showProgress = FALSE) 

sprintf("Size of total data in memory: %s MB", utils::object.size(allData)/1000000) 

## [1] "Size of total data in memory: 1173.480728 MB" 

sprintf("Size of only four columns in memory: %s MB", utils::object.size(fourColumns)/1000000) 

## [1] "Size of only four columns in memory: 105.311936 MB" 

3. Limiting both the number of rows and the number of columns using sqldf 

The sqldf package allows you to run SQL-like queries on a file, resulting in only a selection of the 

file being read. It allows you to limit both the number of lines and the number of rows at the same 

time. In the background, this actually creates a sqlite database on the fly to execute the query. 

4. Streaming data 

Streaming a file means reading it line by line and only keeping the lines you need or do stuff with 

the lines while you read through the file. It turns out that R is really not very efficient in streaming 

files. The main reason is the memory allocation process that has difficulties with a constantly 

growing object (which can be a dataframe containing only the selected lines). 

Working with relational databases 

In many production environments, the data you want lives in a relational or SQL database, not in 

files. Public data is often in files (as they are easier to share), but your most important client data is 

often in databases. Relational databases scale easily to the millions of records and supply important 

production features such as parallelism, consistency, transactions, logging, and audits. When you’re 

working with transaction data, you’re likely to find it already stored in a relational database, as 

relational data- bases excel at online transaction processing ( OLTP ). Often you can export the 

data into a structured file and use the methods of our previous sections to then transfer the data into 

R. But this is generally not the right way to do things. Exporting from databases to files is often 

unreliable and idiosyn- cratic due to variations in database tools and the typically poor job these 

tools do when quoting and escaping characters that are confused with field separators. Data in a 

database is often stored in what is called a normalized form, which requires relational 

preparations called joins before the data is ready for analysis. Also, you often don’t want a dump of 

the entire database, but instead wish to freely specify which columns and aggregations you need 

during analysis. 

 
Loading data with SQL Screwdriver 

java -classpath SQLScrewdriver.jar:h2-1.3.170.jar \ com.winvector.db.LoadFiles \ file:dbDef.xml \ 

, \ hus \ file:csv_hus/ss11husa.csv file:csv_hus/ss11husb.csv java -classpath SQLScrewdriver.jar:h2- 

1.3.170.jar \ com.winvector.db.LoadFiles \ file:dbDef.xml , pus \ file:csv_pus/ss11pusa.csv 

file:csv_pus/ss11pusb.csv 

Loading data from a database into R 

To load data from a database, we use a database connector. Then we can directly issue SQL queries 

from R. SQL is the most common database query language and allows us to specify arbitrary joins 

and aggregations. SQL is called a declarative language (as opposed to a procedural language) 

because in SQL we specify what relations we would like our data sample to have, not how to 

https://cran.r-project.org/web/packages/sqldf/sqldf.pdf
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compute them. For our example, we load a 

sample of the household data from the hus table and the rows from the person table ( pus ) that are 

associated with those households. 

options( java.parameters = "-Xmx2g" ) 

drv <- JDBC("org.h2.Driver","h2-1.3.170.jar",identifier.quote="'") 

options<-";LOG=0;CACHE_SIZE=65536;LOCK_MODE=0;UNDO_LOG=0" 

conn <- dbConnect(drv,paste("jdbc:h2:H2DB",options,sep=''),"u","u") 

dhus <- dbGetQuery(conn,"SELECT * FROM hus WHERE ORIGRANDGROUP<=1") 

dpus <- dbGetQuery(conn,"SELECT pus.* FROM pus WHERE pus.SERIALNO IN \ 

(SELECT DISTINCT hus.SERIALNO FROM hus \ 

WHERE hus.ORIGRANDGROUP<=1)") 

dbDisconnect(conn) 

save(dhus,dpus,file='phsample.RData') 

And we’re in business; the data has been unpacked from the Census-supplied .csv files into our 

database and a useful sample has been loaded into R for analysis. We have actually accomplished a 

lot. Generating, as we have, a uniform sample of households and matching people would be tedious 

using shell tools. It’s exactly what SQL data- bases are designed to do well. 

 
Data manipulation packages 

Data Manipulation is a loosely used term with ‘Data Exploration’. It involves ‘manipulating’ data 

using available set of variables. This is done to enhance accuracy and precision associated with data. 

1. dplyr Package 

This packages is created and maintained by Hadley Wickham. This package has everything (almost) 

to accelerate your data manipulation efforts. It is known best for data exploration and 

transformation. It’s chaining syntax makes it highly adaptive to use. It includes 5 major data 

manipulation commands: 

1. filter – It filters the data based on a condition 

2. select – It is used to select columns of interest from a data set 

3. arrange – It is used to arrange data set values on ascending or descending order 

4. mutate – It is used to create new variables from existing variables 

5. summarise (with group_by) – It is used to perform analysis by commonly used operations 

such as min, max, mean count etc 

Simple focus on these commands and do great in data exploration. Let’s understand these 

commands one by one. I have used 2 pre-installed R data sets namely mtcars and iris. 

> library(dplyr) 

> data("mtcars") 

> data('iris') 

https://en.wikipedia.org/wiki/Hadley_Wickham#_blank
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> mydata <- mtcars 

#read data 

> head(mydata) 

 

 

 

 

 

#creating a local dataframe. Local data frame are easier to read 

> mynewdata <- tbl_df(mydata) 

> myirisdata <- tbl_df(iris) 

 

#now data will be in tabular structure 

> mynewdata 
 

> myirisdata 

 

 

 

 

 

 

 

 

 

 

 
#use filter to filter data with required condition 

> filter(mynewdata, cyl > 4 & gear > 4 ) 
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> filter(mynewdata, cyl > 4) 

 

 

 

 

 

 

 

 

 

 

 

 

 
> filter(myirisdata, Species %in% c('setosa', 'virginica')) 

 

 

 

 

 

 

 

 

 

 

 

 
#use select to pick columns by name 
> select(mynewdata, cyl,mpg,hp) 
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#here you can use (-) to hide columns 

> select(mynewdata, -cyl, -mpg ) 

 

 

 

 

 

 

 

 

 

 

 
#hide a range of columns 

> select(mynewdata, -c(cyl,mpg)) 

 

 

 

 

 

 

 

 

 

 

 
#select series of columns 

 

> select(mynewdata, cyl:gear) 

 

 

 

 

 

 

 

 

 

 

 
#chaining or pipelining - a way to perform multiple operations 

#in one line 

> mynewdata %>% 

select(cyl, wt, gear)%>% 

filter(wt > 2) 



Data Science A.Y. 2023-2024 

Department of CSE Page 42 

 

 

 

 
 

 
 

#arrange can be used to reorder rows 

> mynewdata%>% 

select(cyl, wt, gear)%>% 

arrange(wt) 

 

 

 

 

 

 

 

 

 

 

 

 

> mynewdata %>% 

select(mpg, cyl)%>% 

mutate(newvariable = mpg*cyl) 

 

 

 

 

 

 

 

 

 

 

 
#or 
> newvariable <- mynewdata %>% mutate(newvariable = mpg*cyl) 

#summarise - this is used to find insights from data 

> myirisdata%>% 

group_by(Species)%>% 

summarise(Average = mean(Sepal.Length, na.rm = TRUE)) 
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#or use summarise each 

> myirisdata%>% 

group_by(Species)%>% 

summarise_each(funs(mean, n()), Sepal.Length, Sepal.Width) 

 

 

 

 

 

#You can create complex chain commands using these 5 verbs. 

#you can rename the variables using rename command 

> mynewdata %>% rename(miles = mpg) 

 

 

 

 

 

 

 

 

 

 

 
 

2. data.table Package 

 
This package allows you to perform faster manipulation in a data set. Leave your traditional ways  

of sub setting rows and columns and use this package. With minimum coding, you can do much 

more. Using data.table helps in reducing computing time as compared to data.frame. You’ll be 

astonished by the simplicity of this package. 

A data table has 3 parts namely DT[i,j,by]. You can understand this as, we can tell R to subset the 

rows using ‘i’, to calculate ‘j’ which is grouped by ‘by’. Most of the times, ‘by’ relates to 

categorical variable. In the code below, I’ve used 2 data sets (airquality and iris). 

#load data 

> data("airquality") 

> mydata <- airquality 

> head(airquality,6) 

 

 

 

 

 

 
> data(iris) 

> myiris <- iris 
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#load package 

> library(data.table) 

> mydata <- data.table(mydata) 

> mydata 

 

 

 

 

 

 

 

 

 

 

 
> mydata[2:4,] 

 

 

 

 
#select columns with particular values 

> myiris[Species == 'setosa'] 

 

 

 

 

 

 

 

 

 

 
#select columns with multiple values. This will give you columns with Setosa 

#and virginica species 

> myiris[Species %in% c('setosa', 'virginica')] 
 

#select columns. Returns a vector 

> mydata[,Temp] 

 

 

 

 

 
 

> mydata[,.(Temp,Month)] 
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#returns sum of selected column 

> mydata[,sum(Ozone, na.rm = TRUE)] 

 

[1]4887 

#returns sum and standard deviation 

> mydata[,.(sum(Ozone, na.rm = TRUE), sd(Ozone, na.rm = TRUE))] 

 

 

#print and plot 

> myiris[,{print(Sepal.Length) 

> plot(Sepal.Width) 

NULL}] 

 

 

 

 

 

 

 

 
#grouping by a variable 

> myiris[,.(sepalsum = sum(Sepal.Length)), by=Species] 

 

 

 

 
#select a column for computation, hence need to set the key on column 

> setkey(myiris, Species) 

 

#selects all the rows associated with this data point 

> myiris['setosa'] 

> myiris[c('setosa', 'virginica')] 

 

3. reshape2 Package 

 
As the name suggests, this package is useful in reshaping data. We all know the data come in many 

forms. Hence, we are required to tame it according to our need. Usually, the process of reshaping 

data in R is tedious and worrisome. R base functions consist of ‘Aggregation’ option using which 

data can be reduced and rearranged into smaller forms, but with reduction in amount of information. 

Aggregation includes tapply, by and aggregate base functions. The reshape package overcome these 
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problems. Here we try to combine features which have unique values. It has 2 functions namely 

melt and cast. 

melt : This function converts data from wide format to long format. It’s a form of restructuring 

where multiple categorical columns are ‘melted’ into unique rows. Let’s understand it using the 

code below. 

#create a data 

> ID <- c(1,2,3,4,5) 

> Names <- c('Joseph','Matrin','Joseph','James','Matrin') 

> DateofBirth <- c(1993,1992,1993,1994,1992) 

> Subject<- c('Maths','Biology','Science','Psycology','Physics') 

> thisdata <- data.frame(ID, Names, DateofBirth, Subject) 

> data.table(thisdata) 

 

 

 

 

 
 

#load package 
> install.packages('reshape2') 
> library(reshape2) 

#melt 

> mt <- melt(thisdata, id=(c('ID','Names'))) 

> mt 

 

 

 

 

 

 

 

 

 

 
cast : This function converts data from long format to wide format. It starts with melted data and 

reshapes into long format. It’s just the reverse of melt function. It has two functions namely, dcast 

and acast. dcast returns a data frame as output. acast returns a vector/matrix/array as the output. 

Let’s understand it using the code below. 

#cast 

> mcast <- dcast(mt, DateofBirth + Subject ~ variable) 

> mcast 

 

 

 

 
 

Note: While doing research work, I found this image which aptly describes reshape package. 
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4. tidyr Package 

This package can make your data look ‘tidy’. It has 4 major functions to accomplish this task. 

Needless to say, if you find yourself stuck in data exploration phase, you can use them anytime 

(along with dplyr). This duo makes a formidable team. They are easy to learn, code and implement. 

These 4 functions are: 

 gather() – it ‘gathers’ multiple columns. Then, it converts them into key:value pairs. This 

function will transform wide from of data to long form. You can use it as in alternative to 

‘melt’ in reshape package. 

 spread() – It does reverse of gather. It takes a key:value pair and converts it into separate 

columns. 

 separate() – It splits a column into multiple columns. 

 unite() – It does reverse of separate. It unites multiple columns into single 

columnLet’s understand it closely using the code below: 

#load package 

> library(tidyr) 

#create a dummy data set 

> names <- c('A','B','C','D','E','A','B') 

> weight <- c(55,49,76,71,65,44,34) 

> age <- c(21,20,25,29,33,32,38) 

> Class <- c('Maths','Science','Social','Physics','Biology','Economics','Accounts') 

#create data frame 

> tdata <- data.frame(names, age, weight, Class) 

> tdata 
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#using gather function 

> long_t <- tdata %>% gather(Key, Value, weight:Class) 

> long_t 

 

 

 

 

 

 

 

 

 

 

 

 

Separate function comes best in use when we are provided a date time variable in the data set. Since, 

the column contains multiple information, hence it makes sense to split it and use those values 

individually. Using the code below, I have separated a column into date, month and year. 

#create a data set 

> Humidity <- c(37.79, 42.34, 52.16, 44.57, 43.83, 44.59) 

> Rain <- c(0.971360441, 1.10969716, 1.064475853, 0.953183435, 0.98878849, 0.939676146) 
> Time <- c("27/01/2015 15:44","23/02/2015 23:24", "31/03/2015 19:15", "20/01/2015 20:52", 

"23/02/2015 07:46", "31/01/2015 01:55") 

#build a data frame 

> d_set <- data.frame(Humidity, Rain, Time) 

 

#using separate function we can separate date, month, year 

> separate_d <- d_set %>% separate(Time, c('Date', 'Month','Year')) 

> separate_d 

 

 

 

 

 

 

 
#using unite function - reverse of separate 

> unite_d <- separate_d%>% unite(Time, c(Date, Month, Year), sep = "/") 

> unite_d 
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#using spread function - reverse of gather 

> wide_t <- long_t %>% spread(Key, Value) 

> wide_t 

 

 

 

 

 

 

 
5. Lubridate Package 

 
Lubridate package reduces the pain of working of data time variable in R. This includes update 

function, duration function and date extraction. 

> install.packages('lubridate') 

> library(lubridate) 

#current date and time 

> now() 

[1] "2015-12-11 13:23:48 IST" 

#assigning current date and time to variable n_time 

> n_time <- now() 

#using update function 

> n_update <- update(n_time, year = 2013, month = 10) 

> n_update 

[1] "2013-10-11 13:24:28 IST" 

#add days, months, year, seconds 

> d_time <- now() 

> d_time + ddays(1) 

[1] "2015-12-12 13:24:54 IST" 

> d_time + dweeks(2) 

[1] "2015-12-12 13:24:54 IST" 

> d_time + dyears(3) 

[1] "2018-12-10 13:24:54 IST" 

> d_time + dhours(2) 

[1] "2015-12-11 15:24:54 IST" 

> d_time + dminutes(50) 

[1] "2015-12-11 14:14:54 IST" 

> d_time + dseconds(60) 

[1] "2015-12-11 13:25:54 IST" 

#extract date,time 

> n_time$hour <- hour(now()) 

> n_time$minute <- minute(now()) 
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> n_time$second <- second(now()) 

> n_time$month <- month(now()) 

> n_time$year <- year(now()) 

#check the extracted dates in separate columns 

> new_data <- data.frame(n_time$hour, n_time$minute, n_time$second, n_time$month, 

n_time$year) 

 

 

> new_data 
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UNIT-III 

Modelling Methods-I: Choosing and evaluating Models 

Mapping problems to machine learning tasks: Classification problems, Scoring problems, 

Grouping: working without known targets, Problem-to-method mapping, Evaluating models: Over 

fitting, Measures of model performance, Evaluating classification models, Evaluating scoring 

models, Evaluating probability model. 

 
There are a number of business problems that your team might be called on to address: 

• Predicting what customers might buy, based on past transactions 

• Identifying fraudulent transactions 

• Determining price elasticity (the rate at which a price increase will decrease 

• sales, and vice versa) of various products or product classes 

• Determining the best way to present product listings when a customer searches 

for an item Customer segmentation: grouping customers with similar purchasing behavior 

• AdWord valuation: how much the company should spend to buy certain AdWords on search 

engines 

• Evaluating marketing campaigns 

• Organizing new products into a product catalog 

Your intended uses of the model have a big influence on what methods you should use. If you want 

to know how small variations in input variables affect outcome, then you likely want to use a 

regression method. If you want to know what single variable drives most of a categorization, then 

decision trees might be a good choice. Also, each business problem suggests a statistical approach 

to try. If you’re trying to predict scores, some sort of regression is likely a good choice; if you’re 

trying to predict categories, then something like random forests is probably a good choice. 

Solving classification problems 

Suppose your task is to automate the assignment of new products to your company’s product 

categories, This can be more complicated than it sounds. Products that come from different sources 

may have their own product classification that doesn’t coincide with the one that you use on your 

retail site, or they may come without any classification at all. Many large online retailers use teams 

of human taggers to hand-categorize their products. This is not only labor-intensive, but inconsistent 

and error-prone. Automation is an attractive option; it’s labor-saving, and can improve the quality of 

the retail site. Product categorization based on product attributes and/or text descriptions of the 

product is an example of classification: deciding how to assign (known) labels to an object. 

Classification itself is an example of what is called supervised learning: in order to learn how to 

classify objects, you need a dataset of objects that have already been classified (called the training 

set). Building training data is the major expense for most classification tasks, especially text-related 

ones. 

Naive Bayes: 

Naive Bayes classifiers are especially useful for problems with many input variables, categorical 
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input variables with a very large number of possible values, and text classification. Naive Bayes 

would be a good first attempt at solving the product categorization problem. 

Decision trees: 

Decision trees are useful when input variables interact with the output in “if-then” kinds of ways 

(such as IF age > 65, THEN has.health.insurance=T). They are also suitable when inputs have an 

AND relationship to each other (such as IF age < 25 AND student=T, THEN...) or when input 

variables are redundant or correlated. The decision rules that come from a decision tree are in 

principle easier for nontechnical users to understand than the decision processes that come from 

other classifiers. 

Logistic regression: 

Logistic regression is appropriate when you want to estimate class probabilities (the probability that 

an object is in a given class) in addition to class assignments. a An example use of a logistic 

regression–based classifier is estimating the probability of fraud in credit card purchases. Logistic 

regression is also a good choice when you want an idea of the relative impact of different input 

variables on the output. For example, you might find out that a $100 increase in transaction size 

increases the odds that the transaction is fraud by 2%, all else being equal. 

Support vector machines: 

Support vector machines (SVMs) are useful when there are very many input variables or when 

input variables interact with the outcome or with each other in complicated (nonlinear) ways. SVMs 

make fewer assumptions about variable distribution than do many other methods, which makes 

them especially useful when the training data isn’t completely representative of the way the data is 

distributed in production. 

Solving scoring problems 

For a scoring example, suppose that your task is to help evaluate how different marketing 

campaigns can increase valuable traffic to the website. The goal is not only to bring more people to 

the site, but to bring more people who buy. You’re looking at a number of different factors: the 

communication channel (ads on websites, YouTube videos, print media, email, and so on); the 

traffic source (Facebook, Google, radio stations, and so on); the demographic targeted; the time of 

year; and so on.Predicting the increase in sales from a particular marketing campaign is an example 

of regression, or scoring. Fraud detection can be considered scoring, too, if you’re trying to estimate 

the probability that a given transaction is a fraudulent one (rather than just returning a yes/no 

answer). 

Scoring is also an instance of supervised learning. 

Linear regression 

Linear regression builds a model such that the predicted numerical output is a linear additive 

function of the inputs. This can be a very effective approximation, even when the underlying 

situation is in fact nonlinear. The resulting model also gives an indication of the relative impact of 

each input variable on the output. Linear regression is often a good first model to try when trying to 

predict a numeric value. 

Logistic regression 

Logistic regression always predicts a value between 0 and 1, making it suitable for predicting 
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probabilities (when the observed outcome is a categorical value) and rates (when the observed 

outcome is a rate or ratio). As we mentioned, logistic regression is an appropriate approach to the 

fraud detection problem, if what you want to estimate is the probability that a given transaction is 

fraudulent or legitimate. 

Working without known targets 

The preceding methods require that you have a training dataset of situations with known outcomes. 

In some situations, there’s not (yet) a specific outcome that you want to predict. Instead, you may be 

looking for patterns and relationships in the data that will help you understand your customers or 

your business better.These situations correspond to a class of approaches called unsupervised 

learning: rather than predicting outputs based on inputs, the objective of unsupervised learning is to 

discover similarities and relationships in the data. 

Some common clustering methods include these: 

• K-means clustering 

• Apriori algorithm for finding association rules 

• Nearest neighbor 

But these methods make more sense when we provide some context and explain their use, as we do 

next. 

 

 
 

 
Evaluating models 

For most model evaluations, we just want to compute one or two summary scores that tell us if the 
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model is effective. To decide if a given score is high or low, we have to appeal to a few ideal 

models: a null model (which tells us what low performance looks like), a Bayes rate model (which 

tells us what high performance looks like), and the best single-variable model (which tells us what 

a simple model can achieve). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Overfitting 

An overfit model looks great on the training data and then performs poorly on new data. A model’s 

prediction error on the data that it trained from is called training error. A model’s prediction error 

on new data is called generalization error. Usually, training error will be smaller than 

generalization error (no big surprise). Ideally, though, the two error rates should be close. If 

generalization error is large, and your model’s test performance is poor, then your model has 

probably overfit—it’s memorized the training data instead of discovering generalizable rules or 

patterns. You want to avoid overfitting by preferring (as long as possible) simpler models which do 

in fact tend to generalize better 
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If you do not split your data, but instead use all available data to both train and evaluate each model, 

then you might think that you will pick the better model, because the model evaluation has seen 

more data. However, the data used to build a model is not the best data for evaluating the model’s 

performance. This is because there’s an optimistic measurement bias in this data, because this data 

was seen during model construction. Model construction is optimizing your performance measure 

(or at least something related to your performance measure), so you tend to get exaggerated 

estimates of performance on your training data. 

In addition, data scientists naturally tend to tune their models to get the best possible performance 

out of them. This also leads to exaggerated measures of performance. This is often called multiple 

comparison bias. And since this tuning might sometimes take advantage of quirks in the training 

data, it can potentially lead to overfit. 

A recommended precaution for this optimistic bias is to split your available data into test and 

training. Perform all of your clever work on the training data alone, and delay measuring your 

performance with respect to your test data until as late as possible in your project (as all choices you 

make after seeing your test or holdout performance introduce a modeling bias). The desire to keep 

the test data secret for as long as possible is why we often actually split data into training, 

calibration, and test sets 

When partitioning your data, you want to balance the trade-off between keeping enough data to fit a 

good model, and holding out enough data to make good estimates of the model’s performance. 
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Some common splits are 70% training to 30% test, or 80% training to 20% test. For large datasets, 

you may even sometimes see a 50–50 split. 

K-fold cross-validation 

Testing on holdout data, while useful, uses each example only once: either as part of the model 

construction or as part of the held-out model evaluation set. This is not statistically efficient, 

because the test set is often much smaller than our whole dataset. This means we are losing some 

precision in our estimate of model performance by partitioning our data so simply. In our example 

scenario, suppose you were not able to collect a very large dataset of historical used car prices. Then 

you might feel that you do not have enough data to split into training and test sets that are large 

enough to both build good models and evaluate them properly. In this situation, you might choose 

to use a more thorough partitioning scheme called k-fold cross-validation. 

 
An estimator is called statistically efficient when it has minimal variance for a given dataset 

size.The idea behind k-fold cross-validation is to repeat the construction of a model on different 

subsets of the available training data and then evaluate that model only on data not seen during 

construction. This allows us to use each and every example in both training and evaluating models 

(just never the same example in both roles at the same time). The idea is shown in figure for k = 3. 

Figure : Partitioning data for 3-fold cross-validation 

 
In the figure, the data is split into three non-overlapping partitions, and the three partitions are 

arranged to form three test-train splits. For each split, a model is trained on the training set and then 

applied to the corresponding test set. The entire set of predictions is then evaluated, using the 

https://livebook.manning.com/book/practical-data-science-with-r-second-edition/chapter-6/ch06fig09


Data Science A.Y. 2023-2024 

Department of CSE Page 57 

 

 

 

 

appropriate evaluation scores that we will discuss later in the chapter. This simulates training a 

model and then evaluating it on a holdout set that is the same size as the entire dataset. Estimating 

the model’s performance on all the data gives us a more precise estimate of how a model of a given 

type would perform on new data. Assuming that this performance estimate is satisfactory, then you 

would go back and train a final model, using all the training data. 

 
Measures of model performance 

For most model evaluations, we just want to compute one or two summary scores that tell us if the 

model is effective. To decide if a given score is high or low, we generally compare our model’s 

performance to a few baseline models. 

The null model 

The null model is the best version of a very simple model you’re trying to outperform. The most 

typical null model is a model that returns the same answer for all situations (a constant model). We 

use null models as a lower bound on desired performance. For example, in a categorical problem, 

the null model would always return the most popular category, as this is the easy guess that is least 

often wrong. For a score model, the null model is often the average of all the outcomes, as this has 

the least square deviation from all the outcomes. 

The idea is that if you’re not outperforming the null model, you’re not delivering value. Note that it 

can be hard to do as good as the best null model, because even though the null model is simple, it’s 

privileged to know the overall distribution of the items it will be quizzed on. We always assume the 

null model we’re comparing to is the best of all possible null models 

Single-variable models 

We also suggest comparing any complicated model against the best single-variable model you have 

available A complicated model can’t be justified if it doesn’t outperform the best single-variable 

model available from your training data. Also, business analysts have many tools for building 

effective single-variable models (such as pivot tables), so if your client is an analyst, they’re likely 

looking for performance above this level. 

Evaluating classification models 

 

A classification model places examples into two or more categories. The most common measure of 

classifier quality is accuracy. For measuring classifier performance,we’ll first introduce the 

incredibly useful tool called the confusion matrix and show how it can be used to calculate many 

important evaluation scores. The first score we’ll discuss is accuracy, and then we’ll move on to 

better and more detailed measures such as precision and recall. 

Let’s use the example of classifying email into spam (email we in no way want) and non-spam 

(email we want). A ready-to-go example (with a good description) is the Spambase dataset 

(http://mng.bz/e8Rh). Each row of this dataset is a set of featuresmeasured for a specific email and 

an additional column telling whether the mail was spam (unwanted) or non-spam (wanted). We’ll 

quickly build a spam classification 

model so we have results to evaluate. To do this, download the file Spambase/spamD.tsv from the 

book’s GitHub site (https://github.com/WinVector/zmPDSwR/ 

tree/master/Spambase) and then perform the steps shown in the following listing. 

Building and applying a logistic regression spam model 

spamD <- read.table('spamD.tsv',header=T,sep='\t') 

spamTrain <- subset(spamD,spamD$rgroup>=10) 

spamTest <- subset(spamD,spamD$rgroup<10) 

http://mng.bz/e8Rh)
https://github.com/WinVector/zmPDSwR/
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spamVars <- setdiff(colnames(spamD),list('rgroup','spam')) 

spamFormula <- as.formula(paste('spam=="spam"', 

paste(spamVars,collapse=' + '),sep=' ~ ')) 
spamModel <- glm(spamFormula,family=binomial(link='logit'), 

data=spamTrain) 

spamTrain$pred <- predict(spamModel,newdata=spamTrain, 
type='response') 

spamTest$pred <- predict(spamModel,newdata=spamTest, 

type='response') 

print(with(spamTest,table(y=spam,glmPred=pred>0.5))) 

## 

glmPred 

## y 

FALSE TRUE 
## 

non-spam 
264 

14 

## 

spam 

22 158 

A sample of the results of our simple spam classifier is shown in the next listing. 

 

Spam classifications 

> sample <- spamTest[c(7,35,224,327),c('spam','pred')] 
> print(sample) 

spam 

pred 

115 

spam 0.9903246227 

361 
spam 0.4800498077 

2300 non-spam 0.0006846551 

3428 non-spam 0.0001434345 

 

CONFUSION MATRIX 

The absolute most interesting summary of classifier performance is the confusion matrix. This 

matrix is just a table that summarizes the classifier’s predictions against the actual known data 

categories.The confusion matrix is a table counting how often each combination of known 

outcomes (the truth) occurred in combination with each prediction type. For our email spam 

example, the confusion matrix is given by the following R command. 

 

cM <- table(truth=spamTest$spam,prediction=spamTest$pred>0.5) 

> print(cM) 
prediction 

truth FALSE TRUE 

non-spam 264  14 

CHANGING A SCORE TO A CLASSIFICATION 

Note that we converted the numerical prediction score into a decision by checking if the score was 

above or below 0.5. For some scoring models (like logistic regression) the 0.5 score is likely a high 

accuracy value. However, accuracy isn’t always the end goal, and for unbalanced training data the 
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0.5 threshold won’t be good. Picking thresholds other than 0.5 can allow the data scientist to trade 

precision for recall we can start at 0.5, but considertrying other thresholds and looking at the ROC 

curve.Most of the performance measures of a classifier can be read off the entries of this confusion 

matrix. We start with the most common measure: accuracy. 

A CCURACY 

Accuracy is by far the most widely known measure of classifier performance. For a classifier, 

accuracy is defined as the number of items categorized correctly divided by the total number of 

items. It’s simply what fraction of the time the classifier is correct. At the very least, you want a 

classifier to be accurate. In terms of our confusion matrix, accuracy is 

(TP+TN)/(TP+FP+TN+FN)=(cM[1,1]+cM[2,2])/sum(cM) or 92% accurate.The error of around 8% 

is unacceptably high for a spam filter, but good for illustrating different sorts of model evaluation 

criteria. 

ACCURACY IS AN INAPPROPRIATE MEASURE FOR UNBALANCED CLASSES 

 

Suppose we have a situation where we have a rare event (say, severe complications during 

childbirth). If the event we’re trying to predict is rare (say, around 1% of the population), the null 

model—the rare event never happens— is very accurate. The null model is in fact more accurate 

than a useful (but not perfect model) that identifies 5% of the population as being “at risk” and 

captures all of the bad events in the 5%. This is not any sort of paradox. It’s just that accuracy is not 

a good measure for events that have unbalanced distribution or unbalanced costs (different costs of 

“type 1” and “type 2” errors). 

PRECISION AND RECALL 

Another evaluation measure used by machine learning researchers is a pair of numbers called 

precision and recall. These terms come from the field of information retrieval and are defined as 

follows. Precision is what fraction of the items the classifier flags as being in the class actually are 

in the class. So precision is TP/(TP+FP) , which is cM[2,2]/(cM[2,2]+cM[1,2]) , or about 0.92 (it is 

only a coincidence that this is so close to the accuracy number we reported earlier). Again, precision 

is how often a positive indication turns out to be correct. It’s important to remember that precision is 

a function of the combination of the classifier and the dataset. It doesn’t make sense to ask how 

precise a classifier is in isolation; it’s only sensible to ask how precise a clas- sifier is for a given 

dataset. In our email spam example, 93% precision means 7% of what was flagged as spam was in 

fact not spam. This is an unacceptable rate for losing possibly important messages. Akismet, on the 

other hand, had a precision of t[2,2]/(t[2,2]+t[1,2]) , or over 99.99%, so in addition to having high 

accuracy, Akismet has even higher precision (very important in a spam filtering application).The 

companion score to precision is recall. Recall is what fraction of the things that are in the class are 

detected by the classifier, or TP/(TP+FN)=cM[2,2]/(cM[2,2]+cM[2,1]) .For our email spam 

example this is 88%, and for the Akismet example it is 99.87%. In both cases most spam is in fact 

tagged (we have high recall) and precision is emphasized over recallIt’s important to remember this: 

precision is a measure of confirmation (when the classifier indicates positive, how often it is in fact 

correct), and recall is a measure of utility (how much the classifier finds of what there actually is to 

find). Precision and recall tend to be relevant to business needs and are good measures to discuss 

with your project sponsor and client. 

F1 

The F1 score is a useful combination of precision and recall. If either precision or recall is very 

small, then F1 is also very small. F1 is defined as 2*precision*recall/(precision+recall) . So our 

email spam example with 0.93 precision and 0.88 recall has an F1 score of 0.90. The idea is that a 

classifier that improves precision or recall by sacrificing a lot of the complementary measure will 
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have a lower F1. 

 

SENSITIVITY AND SPECIFICITY 

 
Scientistsand doctors tend to use a pair of measures called sensitivity and specificity. Sensitivity is 

also called the true positive rate and is exactly equal to recall. Specificity is also called the true 

negative rate and is equal to TN/(TN+FP)=cM[1,1]/(cM[1,1]+cM[1,2]) or about 95%. 

 

 
 

One conclusion for this dialogue process on spam classification would be to recommend writing the 

business goals as maximizing sensitivity while maintaining a specificity of at least 0.999. 

Evaluating scoring models 

Evaluating models that assign scores can be a somewhat visual task. The main concept is looking at 

what is called the residuals or the difference between our predictions. 

f(x[i,]) and actual outcomes y[i]. 

 
d <- data.frame(y=(1:10)^2,x=1:10) 
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model <- lm(y~x,data=d) 

 
d$prediction <- predict(model,newdata=d) 

library('ggplot2') 

ggplot(data=d) + geom_point(aes(x=x,y=y)) + 

geom_line(aes(x=x,y=prediction),color='blue') + 

geom_segment(aes(x=x,y=prediction,yend=y,xend=x)) + 

scale_y_continuous('') 

 
 

 

 

 
ROOT MEAN SQUARE ERROR 

The most common goodness-of-fit measure is called root mean square error (RMSE). This is the 

square root of the average square of the difference between our prediction and actual values. Think 

of it as being like a standard deviation: how much your prediction is typically off. 

R-SQUARED 

Another important measure of fit is called R-squared (or R2, or the coefficient of determination). 

It’s defined as 1.0 minus how much unexplained variance your model leaves (measured relative to a 

null model of just using the average y as a prediction). 

CORRELATION 

 
Correlation is very helpful in checking if variables are potentially useful in a model. Be advised that 

there are at least three calculations that go by the name of correlation:Pearson, Spearman, and 

Kendall (see help(cor)). The Pearson coefficient checks for linear relations, the Spearman 

coefficient checks for rank or ordered relations, and the Kendall coefficient checks for degree of 

voting agreement. Each of these coefficients performs a progressively more drastic transform than 

the one before and has well-known direct significance tests (see help(cor.test)). 

DON’T USE CORRELATION TO EVALUATE MODEL QUALITY IN PRODUCTION 

It’s tempting to use correlation to measure model quality, but we advise against it. The problem is 
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this: correlation ignores shifts and scaling factors. So correlation is actually computing if there is 

any shift and rescaling of your predictor that is a good predictor. This isn’t a problem for training 

data (as these predictions tend to not have a systematic bias in shift or scaling by design) but can 

mask systematic errors that may arise when a model is used in production. 

 
ABSOLUTE ERROR 

 
For many applications (especially those involving predicting monetary amounts), measures such as 

absolute error (sum(abs(d$prediction-d$y))), mean absolute error (sum(abs(d$prediction 

d$y))/length(d$y)), and relative absolute error (sum(abs(d$prediction-d$y))/sum(abs(d$y))) are 

tempting measures. It does make sense to check and report these measures, but it’s usually not 

advisable to make these measures the project goal or to attempt to directly optimize them. This is 

because absolute error measures tend not to “get aggregates right” or “roll up reasonably” as most 

of the squared errors do. As an example, consider an online advertising company with three 

advertisement purchases returning $0, $0, and $25 respectively. Suppose our modeling task is as 

simple as picking a single summary value not too far from the original three prices. The price 

minimizing absolute error is the median, which is $0, yielding an absolute error of 

sum(abs(c(0,0,25)-20)), or $25. The price minimizing square error is the mean, which is $8.33 

(which has a worse absolute error of $33.33). However the median price of $0 misleadingly values 

the entire campaign at $0. One great advantage of the mean is this: aggregating a mean prediction 

gives an unbiased prediction of the aggregate in question. It is often an unstated project need that 

various totals or roll-ups of the predicted amounts be close to the roll-ups of the unknown values to 

be predicted. For monetary applications, predicting the totals or aggregates accurately is often more 

important than getting individual values right. In fact, most statistical modeling techniques are 

designed for regression, which is the unbiased prediction of means or 

expected values. 

 
Evaluating probability models 

 
Probability models are useful for both classification and scoring tasks. Probability models are 

models that both decide if an item is in a given class and return an estimated probability (or 

confidence) of the item being in the class. The modeling techniques of logistic regression and 

decision trees are fairly famous for being able to return good probability estimates. Such models can 

be evaluated on their final decisions, most of the measures for probability models are very technical 

and very good at comparing the qualities of different models on the same dataset. But these criteria 

aren’t easy to precisely translate into businesses needs. So we recommend tracking them, but not 

using them with your project sponsor or client. 
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Distribution of score broken up by known classes 

 
THE RECEIVER OPERATING CHARACTERISTIC CURVE 

The receiver operating characteristic curve (or ROC curve) is a popular alternative to the 

double density plot. For each different classifier we’d get by picking a different score 

threshold between positive and negative determination, we plot both the true positive 

rate and the false positive rate. This curve represents every possible trade-off between 

sensitivity and specificity that is available for this classifier. The steps to produced the 

ROC plot. 
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library('ROCR') 

eval <- prediction(spamTest$pred,spamTest$spam) 

plot(performance(eval,"tpr","fpr")) 

print(attributes(performance(eval,'auc'))$y.values[[1]]) 

[1] 0.9660072 

 
LOG LIKELIHOOD 

An important evaluation of an estimated probability is the log likelihood. The log likelihood is the 

logarithm of the product of the probability the model assigned to each example.2 For a spam email 

with an estimated likelihood of 0.9 of being spam, the log likelihood is log(0.9); for a non-spam 

email, the same score of 0.9 is a log likelihood of log(1-0.9) (or just the log of 0.1, which was the 

estimated probability of not being spam). The principle is this: if the model is a good explanation, 

then the data should look likely (not implausible) under the model. The following listing shows how 

the log likelihood of our example is derived. 

> sum(ifelse(spamTest$spam=='spam', 

log(spamTest$pred), 

log(1-spamTest$pred))) 

[1] -134.9478 

> sum(ifelse(spamTest$spam=='spam', 

log(spamTest$pred), 

log(1-spamTest$pred)))/dim(spamTest)[[1]] 

[1] -0.2946458 

 
The first term (-134.9478) is the model log likelihood the model assigns to the test data. This 

number will always be negative, and is better as we get closer to 0. The second expression is the log 

likelihood rescaled by the number of data points to give us a rough average surprise per data point. 

Now a good null model in this case would be always returning the probability of 180/458 (the 

number of known spam emails over 

the total number of emails as the best single-number estimate of the chance of spam). This null 

model gives the log likelihood shown in the next listing. 
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DEVIANCE 

 
Another common measure when fitting probability models is the deviance. The deviance is defined 

as -2*(logLikelihood-S), where S is a technical constant called “the log likelihood of the saturated 

model.” The lower the residual deviance, the better the model. In most cases, the saturated model is 

a perfect model that returns probability 1 for items in the class and probability 0 for items not in the 

class (so S=0). 

 
AIC 

An important variant of deviance is the Akaike information criterion (AIC). This is equivalent to 

deviance + 2*numberOfParameters used in the model used to make the prediction. Thus, AIC is 

deviance penalized for model complexity. A nice trick is to do as the Bayesians do: use Bayesian 

information criterion (BIC) (instead of AIC) where an empirical estimate of the model complexity 

(such as 2*2^entropy, instead of 2*numberOfParameters) is used as the penalty. 

ENTROPY 

Entropy is a fairly technical measure of information or surprise, and is measured in a unit called bits. 

If p is a vector containing the probability of each possible outcome, then the entropy of the 

outcomes is calculated as sum(-p*log(p,2)) (with the convention that 0*log(0) = 0). As entropy 

measures surprise, you want what’s called the conditional entropy of your model to be appreciably 

lower than the original entropy. The conditional entropy is a measure that gives an indication of 

how good the prediction is on different categories, tempered by how often it predicts different 

categories. 
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UNIT – IV 

Modelling Methods-II: Linear and logistic regression 

Using linear regression: Understanding linear regression, Building a linear regression model, 

making predictions. 

Using logistic regression: Understanding logistic regression, Building a logistic regression model, 

making predictions. 

 
 

LINEAR AND LOGISTIC REGRESSION : 

 

Linear models are especially useful when you don’t want only to predict an outcome, but also to 

know the relationship between the input variables and the outcome. This knowledge can prove 

useful because this relationship can often be used as advice on how to get the outcome that you 

want. We’ll first define linear regression and then use it to predict customer income. Later, we will 

use logistic regression to predict the probability that a newborn baby will need extra medical 

attention. We’ll also walk through the diagnostics that R produces when you fit a linear or logistic 

model.Linear methods can work well in a surprisingly wide range of situations. However, there can 

be issues when the inputs to the model are correlated or collinear. In the case of logistic regression, 

there can also be issues (ironically) when a subset of the variables predicts a classification output 

perfectly in a subset of the training data. 

 
USING LINEAR REGRESSION : 

 

Linear regression is the bread and butter prediction method for statisticians and data scientists. If 

you’re trying to predict a numerical quantity like profit, cost, or sales volume, you should always 

try linear regression first. If it works well, you’re done; if it fails, the detailed diagnostics produced 

can give you a good clue as to what methods you should try next. 

 
UNDERSTANDING LINEAR REGRESSION : 

Example Suppose you want to predict how many pounds a person on a diet and exercise plan will 

lose in a month. You will base that prediction on other facts about that person, like how much they 

reduce their average daily caloric intake over that month and how many hours a day they exercised. 

In other words, for every person i, you want to predict pounds lost[i] based on daily_cals_down[i] 

and daily_exercise[i]. 

 
Linear regression assumes that the outcome pounds_lost is linearly related to each of the inputs 

daily_cals_down[i] and daily_exercise[i]. This means that the relationship between (for instance) 

daily_cals_down[i] and pounds_lost looks like a (noisy) straight line, as shown in figure 7.2.1 
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The relationship between daily_exercise and pounds_lost would similarly be a straight line. 

Suppose that the equation of the line shown in figure 7.2 is 

 
 

pounds_lost = bc0 + b.cals * daily_cals_down 

 
 

This means that for every unit change in daily_cals_down (every calorie reduced), the value of 

pounds_lost changes by b.cals, no matter what the starting value of daily_cals_down was. To make 

it concrete, suppose pounds_lost = 3 + 2 * daily_ cals_down. Then increasing daily_cals_down by 

one increases pounds_lost by 2, no matter what value of daily_cals_down you start with. This 

would not be true for, say, pounds_lost = 3 + 2 * (daily_cals_down^2). 

 
Linear regression further assumes that the total pounds lost is a linear combination of our variables 

daily_cals_down[i] and daily_exercise[i], or the sum of the pounds lost due to reduced caloric 

intake, and the pounds lost due to exercise. This gives us the following form for the linear 

regression model of pounds_lost: 

pounds_lost[i] = b0 + b.cals * daily_cals_down[i] + 

b.exercise * daily_exercise[i] 

 
The goal of linear regression is to find the values of b0, b.cals, and b.exercise so that the linear 

combination of daily_cals_lost[i] and daily_exercise[i] (plus some offset b0) comes very close to 

pounds_lost[i] for all persons i in the training data. Let’s put this in more general terms. Suppose 

that y[i] is the numeric quantity you want to predict (called the dependent or response variable), and 

x[i,] is a row of inputs that corresponds to output y[i] (the x[i,] are the independent or explanatory 

variables). Linear regression attempts to find a function f(x) such that 
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y[i] ~ f(x[i,]) + e[i] = b[0] + b[1] * x[i,1] + ... + b[n] * x[i,n] + e[i] 

 

The expression for a linear regression model 

You want numbers b[0],...,b[n] (called the coefficients or betas) such that f(x[i,]) is as near as 

possible to y[i] for all (x[i,],y[i]) pairs in the training data. R supplies a one-line command to find 

these coefficients: lm(). The last term in equation 7.1, e[i], represents what are called unsystematic 

errors, or noise. Unsystematic errors are defined to all have a mean value of 0 (so they don’t 

represent a net upward or net downward bias) and are defined as uncorrelated with x[i,]. In other 

words, x[i,] should not encode information about e[i] (or vice versa). 

 
By assuming that the noise is unsystematic, linear regression tries to fit what is called an “unbiased” 

predictor. This is another way of saying that the predictor gets the right answer “on average” over 

the entire training set, or that it underpredicts about as much as it overpredicts. In particular, 

unbiased estimates tend to get totals correct. 

 
Example Suppose you have fit a linear regression model to predict weight loss based on reduction 

of caloric intake and exercise. Now consider the set of subjects in the training data, LowExercise, 

who exercised between zero and one hour a day. Together, these subjects lost a total of 150 pounds 

over the course of the study. How much did the model predict they would lose? 

With a linear regression model, if you take the predicted weight loss for all the subjects in Low 

Exercise and sum them up, that total will sum to 150 pounds, which means that the model predicts 

the average weight loss of a person in the Low Exercise group correctly, even though some of the 

individuals will have lost more than the model predicted, and some of them will have lost less. In a 

business setting, getting sums like this correct is critical, particularly when summing up monetary 

amounts. Under these assumptions (linear relationships and unsystematic noise), linear regression is 

absolutely relentless in finding the best coefficients b[i]. If there’s some advantageous combination 

or cancellation of features, it’ll find it. One thing that linear regression doesn’t do is reshape 

variables to be linear. Oddly enough, linear regression often does an excellent job, even when the 

actual relation is not in fact linear. 

 
INTRODUCING THE PUMS DATASET 

Example Suppose you want to predict personal income of any individual in the general 

public, within some relative percent, given their age, education, and other demographic variables. In 

addition to predicting income, you also have a secondary goal: to determine the effect of a 

bachelor’s degree on income, relative to having no degree at all. 
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For this task, you will use the 2016 US Census PUMS dataset. For simplicity, we have 

prepared a small sample of PUMS data to use for this example. The data preparation 

steps include these: 

 Restricting the data to full-time employees between 20 and 50 years of age, with 

an income between $1,000 and $250,000. 

 Dividing the data into a training set, dtrain, and a test set, dtest. 

 

Each row of PUMS data represents a single anonymized person or household. Personal data 

recorded includes occupation, level of education, personal income, and many other demographic 

variables. For this example we have decided to predict log10(PINCP), or the logarithm of income. 

Fitting logarithm-transformed data typically gives results with smaller relative error, emphasizing 

smaller errors on smaller incomes. But this improved relative error comes at a cost of introducing a 

bias: on average, predicted incomes are going to be below actual training incomes. An unbiased 

alternative to predicting log(income) would be to use a type of generalized linear model called 

Poisson regression. The Poisson regression is unbiased, but typically at the cost of larger relative 

errors.1 For the analysis in this section, we’ll consider the input variables age (AGEP), sex (SEX), 

class of worker (COW), and level of education (SCHL). The output variable is personal income 

(PINCP). We’ll also set the reference level, or “default” sex to M (male); the reference level of class 

of worker to Employee of a private for-profit; and the reference level of education level to no high 

school diploma. 
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BUILDING A LINEAR REGRESSION MODEL 

The first step in either prediction or finding relations (advice) is to build the linear regression model. 

The function to build the linear regression model in R is lm(), supplied by the stats package. The 

most important argument to lm() is a formula with ~ used in place of an equals sign. The formula 

specifies what column of the data frame is the quantity to be predicted, and what columns are to be 

used to make the predictions. Statisticians call the quantity to be predicted the dependent variable 

and the variables/ columns used to make the prediction the independent variables. We find it is 

easier to call the quantity to be predicted the y and the variables used to make the predictions the xs. 

Our formula is this: log10(PINCP) ~ AGEP + SEX + COW + SCHL, which is read “Predict the log 

base 10 of income as a function of age, sex, employment class, and education.” 

 

 
 

 

 

 
R STORES TRAINING DATA IN THE MODEL R holds a copy of the training data in 

its model to supply the residual information seen in summary(model). Holding a copy of the data 

this way is not strictly necessary, and can needlessly run you out of memory. If you’re running low 

on memory (or swapping), you can dispose of R objects like model using the rm() command. In this 

case, you’d dispose of the model by running rm("model"). 

 
MAKING PREDICTIONS: 

 
 

Once you’ve called lm() to build the model, your first goal is to predict income. This is easy to do in 

R. To predict, you pass data into the predict() method. Figure demonstrates this using both the test 

and training data frames dtest and dtrain. 
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The data frame columns dtest$predLogPINCP and dtrain$predLogPINCP now store the predictions 

for the test and training sets, respectively. We have now both produced and applied a linear 

regression model. 

 
USING LOGISTIC REGRESSION: 

 
 

Logistic regression is the most important (and probably most used) member of a class of models 

called generalized linear models. Unlike linear regression, logistic regression can directly predict 

values that are restricted to the (0, 1) interval, such as probabilities. It’s the go-to method for 

predicting probabilities or rates, and like linear regression, the coefficients of a logistic regression 

model can be treated as advice. It’s also a good first choice for binary classification problems. In 

this section, we’ll use a medical classification example (predicting whether a 

newborn will need extra medical attention) to work through all the steps of producing and using a 

logistic regression model.1 As we did with linear regression, we’ll take a quick overview of logistic 

regression before tackling the main example. 

 
UNDERSTANDING LOGISTIC REGRESSION 

Example Suppose you want to predict whether or not a flight will be delayed, based on 
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facts like the flight’s origin and destination, weather, and air carrier. For every flight i, you want to 

predict flight_delayed[i] based on origin[i], destination[i], weather[i], and air_carrier[i].  

We’d like to use linear regression to predict the probability that a flight i will be delayed, but 

probabilities are strictly in the range 0:1, and linear regression doesn’t restrict its prediction to that 

range. 

 
One idea is to find a function of probability that is in the range -Infinity:Infinity, fit a linear model 

to predict that quantity, and then solve for the appropriate probabilities from the model predictions. 

So let’s look at a slightly different problem: instead of predicting the probability that a flight is 

delayed, consider the odds that the flight is delayed, or the ratio of the probability that the flight is 

delayed over the probability that it is not. 

odds[flight_delayed] = P[flight_delayed == TRUE] / P[flight_delayed == FALSE] 

The range of the odds function isn’t -Infinity:Infinity; it’s restricted to be a nonnegative 

number. But we can take the log of the odds---the log-odds---to get a function of the probabilities 

that is in the range -Infinity:Infinity. 

log_odds[flight_delayed] = log(P[flight_delayed == TRUE] / P[flight_delayed = 

= FALSE]) 

Let: p = P[flight_delayed == TRUE]; then 

log_odds[flight_delayed] = log(p / (1 - p)) 

 
Note that if it’s more likely that a flight will be delayed than on time, the odds ratio will be greater 

than one; if it’s less likely that a flight will be delayed than on time, the odds ratio will be less than 

one. So the log-odds is positive if it’s more likely that the flight will be delayed, negative if it’s 

more likely that the flight will be on time, and zero if the chances of delay are 50-50. 

The log-odds of a probability p is also known as logit(p). The inverse of logit(p) is the sigmoid 

function, shown in figure 7.13. The sigmoid function maps values in the range from - 

Infinity:Infinity to the range 0:1—in this case, the sigmoid maps unbounded log-odds ratios to a 

probability value that is between 0 and 1. 

logit <- function(p) { log(p/(1-p)) } 

s <- function(x) { 1/(1 + exp(-x))} 

s(logit(0.7)) 

# [1] 0.7 

logit(s(-2)) 

# -2 
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BUILDING A LOGISTIC REGRESSION MODEL 

 
 

The function to build a logistic regression model in R is glm(), supplied by the stats package. In our 

case, the dependent variable y is the logical (or Boolean) atRisk; all the other variables in table 7.1 

are the independent variables x. The formula for building a model to predict atRisk using these 

variables is rather long to type in by hand; you can generate the formula using the mk_formula() 

function from the wrapr package, as shown next. 
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This is similar to the linear regression call to lm(), with one additional argument: 

family = binomial(link = "logit"). The family function specifies the assumed distribution of the 

dependent variable y. In our case, we’re modeling y as a binomial distribution, or as a coin whose 

probability of heads depends on x. The link function “links” the output to a linear model—it’s as if 

you pass y through the link function, and then model the resulting value as a linear function of the x 

values. Different combinations of family functions and link functions lead to different kinds of 

generalized linear models (for example, Poisson, or probit). In this book, we’ll only discuss logistic 

models, so we’ll only need to use the binomial family with the logit link 

MAKING PREDICTIONS 

Making predictions with a logistic model is similar to making predictions with a linear model—use 

the predict() function. The following code stores the predictions for the training and test sets as the 

column pred in the respective data frames. 

 
Applying the logistic regression model. 

 
 

train$pred <- predict(model, newdata=train, type = "response") 

test$pred <- predict(model, newdata=test, type="response") 
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Note the additional parameter type = "response". This tells the predict() function to return the 

predicted probabilities y. If you don’t specify type = "response", then by default predict() will return 

the output of the link function, logit(y). One strength of logistic regression is that it preserves the 

marginal probabilities of the training data. That means that if you sum the predicted probability 

scores for the entire training set, that quantity will be equal to the number of positive outcomes 

(atRisk == TRUE) in the training set. This is also true for subsets of the data determined by 

variables included in the model. For example, in the subset of the training data that has 

train$GESTREC == "<37 weeks" (the baby was premature), the sum of the predicted probabilities 

equals the number of positive training examples. 
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UNIT-V 

Data visualization with R 

Introduction to ggplot2: A worked example, Placing the data and mapping options, Graphs as 
objects, Univariate Graphs: Categorical, Quantitative. 

Bivariate Graphs- Categorical vs. Categorical, Quantitative vs Quantitative, Categorical vs. 

Quantitative, Multivariate Graphs : Grouping, Faceting. 

 

Introduction to ggplot2: 

A worked example 

The functions in the ggplot2 package build up a graph in layers. We’ll build a complex graph by 

starting with a simple graph and adding additional elements, one at a time. 

The example uses data from the 1985 Current Population Survey to explore the relationship be- 

tween wages (wage) and experience (expr). 
 

 

In building a ggplot2 graph, only the first two functions described below are required. The other 

functions are optional and can appear in any order. 

 
ggplot 

 

The first function in building a graph is the ggplot function. It specifies the 

 
 data frame containing the data to be plotted 

 the mapping of the variables to visual properties of the graph. The mappings are placed 

within the aes function (where aes stands for aesthetics). 

 

 

Figure: Map variables 

Why is the graph empty? We specified that the exper variable should be mapped to the x-axis 

and that the wage should be mapped to the y-axis, but we haven’t yet specified what we wanted 

placed on the graph. 

# load data 

data(CPS85 , package ="mosaicData") 

# specify dataset and mapping 

library(ggplot2) 

ggplot(data = CPS85, 

mapping =aes(x =exper, y = wage)) 

https://rkabacoff.github.io/datavis/Data.html#CPS85
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geoms 

Geoms are the geometric objects (points, lines, bars, etc.) that can be placed on a graph. They are 

added using functions  that start with geom_.  In  this example, we’ll  add  points using 

the geom_point function, creating a scatterplot. 

In ggplot2 graphs, functions are chained together using the + sign to build a final plot. 

# add points 

ggplot(data = CPS85, 

mapping =aes(x =exper, y = wage)) + 

geom_point() 
 

 

 

 

 

 
 

 

 

 

 

 

 
 

Figure: Add points 
 

The graph indicates that there is an outlier. One individual has a wage much higher than the rest. 

We’ll delete this case before continuing. 
 

 

Figure: Remove outlier 
 

A number of parameters (options) can be specified in a geom_ function. Options for 

the geom_point function include color, size, and alpha. These control the point color, size, and 

# delete outlier 

library(dplyr) 
plotdata<-filter(CPS85, wage <40) 

 

# redraw scatterplot 

ggplot(data =plotdata, 

mapping =aes(x =exper, y = wage)) + 

geom_point() 
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transparency, respectively. Transparency ranges from 0 (completely transparent) to 1 (complete- 

ly opaque). Adding a degree of transparency can help visualize overlapping points. 

 

 

Figure: Modify point color, transparency, and size 
 

Next, let’s add a line of best fit. We can do this with the geom_smooth function. Options control 

the type of line (linear, quadratic, nonparametric), the thickness of the line, the line’s color, and 

the presence or absence of a confidence interval. Here we request a linear regression (method = 
 

lm) line (where lm stands for linear model). 
 

Figure: Add line of best fit 
 

Wages appears to increase with experience. 

# make points blue, larger, and semi-transparent 

ggplot(data =plotdata, 
mapping =aes(x =exper, y = wage)) + 

geom_point(color ="cornflowerblue", 

alpha = .7, 

size =3) 

# add a line of best fit. 

ggplot(data =plotdata, 

mapping =aes(x =exper, y = wage)) + 

geom_point(color ="cornflowerblue", 

alpha = .7, 

size =3) + 

geom_smooth(method ="lm") 
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grouping 
 

In addition to mapping variables to the x and y axes, variables can be mapped to the color, shape, 

size, transparency, and other visual characteristics of geometric objects. This allows groups of 

observations to be superimposed in a single graph. 

Let’s add sex to the plot and represent it by color. 
 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure: Include sex, using color 
 

The color = sex option is placed in the aes function, because we are mapping a variable to an 

aesthetic. The geom_smooth option (se = FALSE) was added to suppresses the confidence inter- 

vals. 

It appears that men tend to make more money than women. Additionally, there may be a stronger 

relationship between experience and wages for men than than for women. 

 

scales  

 
Scales control how variables are mapped to the visual characteristics of the plot. Scale functions 

(which start with scale_) allow you to modify this mapping. In the next plot, we’ll change 

# modify the x and y axes and specify the colors to be used 
ggplot(data =plotdata, 

mapping =aes(x =exper, 

y = wage, 

color = sex)) + 

geom_point(alpha = .7, 

size =3) + 

geom_smooth(method ="lm", 

se =FALSE, 
size =1.5) + 

# indicate sex using color 

ggplot(data =plotdata, 

mapping =aes(x =exper, 

y = wage, 

color = sex)) + 

geom_point(alpha = .7, 
size =3) + 

geom_smooth(method ="lm", 

se =FALSE, 

size =1.5) 
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the x and y axis scaling, and the colors employed. 

Figure: Change colors and axis labels 
 

We’re getting there. The numbers on the x and y axes are better, the y axis uses dollar notation, 

and the colors are more attractive (IMHO). 

Here is a question. Is the relationship between experience, wages and sex the same for each job 

sector? Let’s repeat this graph once for each job sector in order to explore this. 

 
facets 

 

Facets reproduce a graph for each level a given variable (or combination of variables). Facets are 

created using functions that start with facet_. Here, facets will be defined by the eight levels of 

the sector variable. 

scale_x_continuous(breaks =seq(0, 60, 10)) + 

scale_y_continuous(breaks =seq(0, 30, 5), 

label =scales::dollar) + 

scale_color_manual(values =c("indianred3", 

"cornflowerblue")) 

# reproduce plot for each level of job sector 
ggplot(data =plotdata, 

mapping =aes(x =exper, 

y = wage, 

color = sex)) + 

geom_point(alpha = .7) + 

geom_smooth(method ="lm", 

se =FALSE) + 

scale_x_continuous(breaks =seq(0, 60, 10)) + 

scale_y_continuous(breaks =seq(0, 30, 5), 

label =scales::dollar) + 

scale_color_manual(values =c("indianred3", 

"cornflowerblue")) + 

facet_wrap(~sector) 
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Figure: Add job sector, using faceting 
 

It appears that the differences between mean and women depend on the job sector under consid- 

eration. 

 
labels 

 

Graphs should be easy to interpret and informative labels are a key element in achieving this 

goal. The labs function provides customized labels for the axes and legends. Additionally, a cus- 
 

tom title, subtitle, and caption can be added. 

# add informative labels 

ggplot(data =plotdata, 

mapping =aes(x =exper, 

y = wage, 

color = sex)) + 

geom_point(alpha = .7) + 

geom_smooth(method ="lm", 

se =FALSE) + 

scale_x_continuous(breaks =seq(0, 60, 10)) + 
scale_y_continuous(breaks =seq(0, 30, 5), 

label =scales::dollar) + 

scale_color_manual(values =c("indianred3", 

"cornflowerblue")) + 

facet_wrap(~sector) + 
labs(title ="Relationship between wages and experience", 
subtitle ="Current Population Survey", 

caption ="source: http://mosaic-web.org/", 

x =" Years of Experience", 

y ="Hourly Wage", 

color ="Gender") 

http://mosaic-web.org/
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Figure: Add informative titles and labels 
 

Now a viewer doesn’t need to guess what the labels expr and wage mean, or where the data 

come from. 

 
themes 

 

Finally, we can fine tune the appearance of the graph using themes. Theme functions (which start 

with theme_) control background colors, fonts, grid-lines, legend placement, and other non-data 
 

related features of the graph. Let’s use a cleaner theme. 

# use a minimalist theme 

ggplot(data =plotdata, 

mapping =aes(x =exper, 

y = wage, 

color = sex)) + 

geom_point(alpha = .6) + 

geom_smooth(method ="lm", 

se =FALSE) + 

scale_x_continuous(breaks =seq(0, 60, 10)) + 

scale_y_continuous(breaks =seq(0, 30, 5), 

label =scales::dollar) + 

scale_color_manual(values =c("indianred3", 

"cornflowerblue")) + 

facet_wrap(~sector) + 
labs(title ="Relationship between wages and experience", 

subtitle ="Current Population Survey", 

caption ="source: http://mosaic-web.org/", 
x =" Years of Experience", 

y ="Hourly Wage", 

color ="Gender") + 

theme_minimal() 

http://mosaic-web.org/
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Figure: Use a simpler theme 
 

Now we have something. It appears that men earn more than women in management, manufac- 

turing, sales, and the “other” category. They are most similar in clerical, professional, and ser- 

vice positions. The data contain no women in the construction sector. For management positions, 

wages appear to be related to experience for men, but not for women (this may be the most inter- 

esting finding). This also appears to be true for sales. 

Of course, these findings are tentative. They are based on a limited sample size and do not in- 

volve statistical testing to assess whether differences may be due to chance variation. 

Placing the data and mapping options 
 

Plots created with ggplot2 always start with the ggplot function. In the examples above, 

the data and mapping options were placed in  this  function.  In  this  case  they  apply  to 

each geom_ function that follows. 

You can also place these options directly within a geom. In that case, they only apply only to 

that specific geom. 

Consider the following graph. 
 

# placingcolor mapping in the ggplot function 

ggplot(plotdata, 
aes(x =exper, 

y = wage, 

color = sex)) + 

geom_point(alpha = .7, 

size =3) + 

geom_smooth(method ="lm", 

formula = y ~poly(x,2), 

se =FALSE, 
size =1.5) 
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Figure: Color mapping in ggplot function 
 

Since  the  mapping  of  sex  to  color  appears  in  the ggplot function,  it  applies 

to both geom_point and geom_smooth. The color of the point indicates the sex, and a separate 

colored trend line is produced for men and women. Compare this to 

 

 

Figure12: Color mapping in ggplot function 
 

Since the sex to color mapping only appears in the geom_point function, it is only used there. A 

single trend line is created for all observations. 

Most of the examples in this book place the data and mapping options in the ggplot function. 

Additionally, the phrases data= and mapping= are omitted since the first option always refers to 

data and the second option always refers to mapping. 

 
Graphs as objects 

A ggplot2 graph can be saved as a named R object (like a data frame), manipulated further, and 

then printed or saved to disk. 

# placingcolor mapping in the geom_point function 
ggplot(plotdata, 

aes(x =exper, 

y = wage)) + 

geom_point(aes(color = sex), 

alpha = .7, 

size =3) + 

geom_smooth(method ="lm", 

formula = y ~poly(x,2), 

se =FALSE, 
size =1.5) 
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# prepare data 

data(CPS85 , package ="mosaicData") 
 

 

Univariate graphs 

Univariate graphs plot the distribution of data from a single variable. The variable can be cate- 

gorical (e.g., race, sex) or quantitative (e.g., age, weight). 

 
Categorical 

 

The distribution of a single categorical variable is typically plotted with a bar chart, a pie chart, 

or (less commonly) a tree map. 

 
Bar chart 

 

The Marriage dataset contains the marriage records of 98 individuals in Mobile County, Ala- 

bama. Below, a bar chart is used to display the distribution of wedding participants by race. 
 

plotdata<-CPS85[CPS85$wage <40,] 

 

# create scatterplot and save it 

myplot<-ggplot(data =plotdata, 

aes(x =exper, y = wage)) + 

geom_point() 

 

# print the graph 

myplot 

 

# make the points larger and blue 

# then print the graph 

myplot<-myplot+geom_point(size =3, color ="blue") 

myplot 
 

# print the graph with a title and line of best fit 

# but don't save those changes 

myplot+geom_smooth(method ="lm") + 

labs(title ="Mildly interesting graph") 

 

# print the graph with a black and white theme 

# but don't save those changes 

myplot+theme_bw() 

library(ggplot2) 

data(Marriage, package ="mosaicData") 
 

# plot the distribution of race 

ggplot(Marriage, aes(x = race)) + 

geom_bar() 

https://rkabacoff.github.io/datavis/Data.html#Marriage
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Figure: Simple barchart 

 
Percents 

 

Bars can represent percents rather than counts. For bar charts, the code aes(x=race) is actually a 

shortcut for aes(x = race, y = ..count..), where ..count.. is a special variable representing the fre- 

quency within each category. You can use this to calculate percentages, by specifying 
 

the y variable explicitly. 
 

Figure: Barchart with percentages 
 

In the code above, the scales package is used to add % symbols to the y-axis labels. 

 
Sorting categories 

 

It is often helpful to sort the bars by frequency. In the code below, the frequencies are calculated 

explicitly. Then the reorder function is used to sort the categories by the frequency. The op- 

tion stat="identity" tells the plotting function not to calculate counts, because they are supplied 
 

# plot the distribution as percentages 

ggplot(Marriage, 
aes(x = race, 

y = ..count.. /sum(..count..))) + 

geom_bar() + 

labs(x ="Race", 

y ="Percent", 

title ="Participants by race") + 

scale_y_continuous(labels = scales::percent) 

# calculate number of participants in 

# each race category 

library(dplyr) 

plotdata<-Marriage %>% 
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directly. 

count(race)  

The resulting dataset is give below. 

 
 

Table 5.1: plotdata 

Race n 

American Indian 1 

Black 22 

Hispanic 1 

White 74 

This new dataset is then used to create the graph. 
 

 

Figure: Sorted bar chart 
 

The graph bars are sorted in ascending order. Use reorder(race, -n) to sort in descending order. 

 
Labeling bars 

 

Finally, you may want to label each bar with its numerical value. 
 

# plot the bars in ascending order 

ggplot(plotdata, 

aes(x =reorder(race, n), 

y = n)) + 

geom_bar(stat ="identity") + 
labs(x ="Race", 

y ="Frequency", 

title ="Participants by race") 

# plot the bars with numeric labels 

ggplot(plotdata, 

aes(x = race, 

y = n)) + 

geom_bar(stat ="identity") + 

geom_text(aes(label = n), 

vjust=-0.5) + 

labs(x ="Race", 

y ="Frequency", 
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title ="Participants by race") 
 

Figure: Bar chart with numeric labels 

 
Overlapping labels 

 

Category labels may overlap if (1) there are many categories or (2) the labels are long. Consider 

the distribution of marriage officials. 
 

 

Figure: Barchart with problematic labels 

Pie chart 
 

Pie charts are controversial in statistics. If your goal is to compare the frequency of categories, 

you are better off with bar charts (humans are better at judging the length of bars than the vol- 

ume of pie slices). If your goal is compare each category with the the whole (e.g., what portion 

of participants are Hispanic compared to all participants), and the number of categories is small, 

then pie charts may work for you. It takes a bit more code to make an attractive pie chart in R. 
 

# basic bar chart with overlapping labels 

ggplot(Marriage, aes(x =officialTitle)) + 

geom_bar() + 

labs(x ="Officiate", 

y ="Frequency", 

title ="Marriages by officiate") 

# create a basic ggplot2 pie chart 

plotdata<-Marriage %>% 

count(race) %>% 

arrange(desc(race)) %>% 

mutate(prop =round(n *100/sum(n), 1), 
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Figure: Basic pie chart 

 
Tree map 

 

An alternative to a pie chart is a tree map. Unlike pie charts, it can handle categorical variables 

that have many levels. 
 

lab.ypos =cumsum(prop) -0.5*prop) 
 

ggplot(plotdata, 

aes(x ="", 

y = prop, 

fill = race)) + 

geom_bar(width =1, 

stat ="identity", 

color ="black") + 

coord_polar("y", 

start =0, 

direction =-1) + 

theme_void() 

library(treemapify) 
 

# create a treemap of marriage officials 

plotdata<-Marriage %>% 

count(officialTitle) 

 

ggplot(plotdata, 

aes(fill =officialTitle, 

area = n)) + 

geom_treemap() + 

labs(title ="Marriages by officiate") 
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Figure: Basic treemap 

 
Quantitative 

 

The distribution of a single quantitative variable is typically plotted with a histogram, kernel 

density plot, or dot plot. 

 
Histogram 

 

Using the Marriage dataset, let’s plot the ages of the wedding participants. 
 

 

Figure: Basic histogram 

 
Bins and bandwidths 

 

One of the most important histogram options is bins, which controls the number of bins into 

which the numeric variable is divided (i.e., the number of bars in the plot). The default is 30, but 

it is helpful to try smaller and larger numbers to get a better impression of the shape of the dis- 

# plot the histogram with 20 bins 

ggplot(Marriage, aes(x = age)) + 

geom_histogram(fill ="cornflowerblue", 

color ="white", 

bins =20) + 

labs(title="Participants by age", 

library(ggplot2) 
 

# plot the age distribution using a histogram 

ggplot(Marriage, aes(x = age)) + 

geom_histogram() + 

labs(title ="Participants by age", 

x ="Age") 

https://rkabacoff.github.io/datavis/Data.html#Marriage
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tribution. 

 

Figure: Histogram with a specified number of bins 
 

Kernel Density plot 
 

An alternative to a histogram is the kernel density plot. Technically, kernel density estimation is 

a nonparametric method for estimating the probability density function of a continuous random 

variable. (What??) Basically, we are trying to draw a smoothed histogram, where the area under 

the curve equals one. 
 

 

Figure: Basic kernel density plot 

 
Smoothing parameter 

 

The degree of smoothness is controlled by the bandwidth parameter bw. To find the default val- 

ue for a particular variable, use the bw.nrd0 function. Values that are larger will result in more 
 

smoothing, while values that are smaller will produce less smoothing. 

subtitle ="number of bins = 20", 

x ="Age") 

# Create a kernel density plot of age 

ggplot(Marriage, aes(x = age)) + 

geom_density() + 

labs(title ="Participants by age") 

# default bandwidth for the age variable 
bw.nrd0(Marriage$age) 

## [1] 5.181946 

# Create a kernel density plot of age 
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Figure: Kernel density plot with a specified bandwidth 

 
Dot Chart 

 

Another alternative to the histogram is the dot chart. Again, the quantitative variable is divided 

into bins, but rather than summary bars, each observation is represented by a dot. By default, the 

width of a dot corresponds to the bin width, and dots are stacked, with each dot representing one 

observation. This works best when the number of observations is small (say, less than 150). 
 

 

Figure: Basic dotplot 
 

Bivariate Graphs: 
 

Bivariate graphs display the relationship between two variables. The type of graph will depend 

on the measurement level of the variables (categorical or quantitative). 

ggplot(Marriage, aes(x = age)) + 

geom_density(fill ="deepskyblue", 

bw =1) + 

labs(title ="Participants by age", 

subtitle ="bandwidth = 1") 

# plot the age distribution using a dotplot 

ggplot(Marriage, aes(x = age)) + 

geom_dotplot() + 

labs(title ="Participants by age", 

y ="Proportion", 

x ="Age") 
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library(ggplot2) 

 
# grouped bar plot 

ggplot(mpg, 

aes(x = class, 

fill =drv)) + 

 

 

Categorical vs. Categorical 

When plotting the relationship between two categorical variables, stacked, grouped, or segment- 

ed bar charts are typically used. A less common approach is the mosaic chart. 

 

Stacked bar chart 
 

Let’s plot the relationship between automobile class and drive type (front-wheel, rear-wheel, or4- 

wheel drive) for the automobiles in the Fuel economy dataset. 
 

 

Figure: Stacked bar chart 
 

Stacked is the default, so the last line could have also been written as geom_bar(). 

 
Grouped bar chart 

 

Grouped bar charts place bars for the second categorical variable side-by-side. To create a 

grouped bar plot use the position = "dodge" option. 

 

 

 

 

 

 
geom_bar(position ="dodge") 

library(ggplot2) 
 

# stacked bar chart 

ggplot(mpg, 

aes(x = class, 

fill =drv)) + 

geom_bar(position ="stack") 

https://rkabacoff.github.io/datavis/Models.html#Mosaic
https://rkabacoff.github.io/datavis/Data.html#MPG
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Figure: Side-by-side bar chart 

 
Segmented bar chart 

 

A segmented bar plot is a stacked bar plot where each bar represents 100 percent. You can create 

a segmented bar chart using the position = "filled" option. 

 

 

Figure: Segmented bar chart 

 
Improving the color and labeling 

 

You can use additional options to improve color and labeling. In the graph below 
 

 factor modifies the order of the categories for the class variable and both the order and 

the labels for the drive variable 

 scale_y_continuous modifies the y-axis tick mark labels 

 labs provides a title and changed the labels for the x and y axes and the legend 

 scale_fill_brewer changes the fill color scheme 

 theme_minimal removes the grey background and changed the grid color 

library(ggplot2) 
 

# bar plot, with each bar representing 100% 

ggplot(mpg, 

aes(x = class, 

fill =drv)) + 

geom_bar(position ="fill") + 

labs(y ="Proportion") 
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Figure: Segmented bar chart with improved labeling and color 

 
Other plots 

 

Mosaic plots provide an alternative to stacked bar charts for displaying the relationship between 

categorical variables. They can also provide more sophisticated statistical information. 

 
Quantitative vs. Quantitative 

 

The relationship between two quantitative variables is typically displayed using scatterplots and 

line graphs. 

 
Scatterplot 

 

The simplest display of two quantitative variables is a scatterplot, with each variable represented 

on an axis. For example, using the Salaries dataset, we can plot experience (yrs.since.phd) 

library(ggplot2) 

# bar plot, with each bar representing 100%, 

# reordered bars, and better labels and colors 

library(scales) 

ggplot(mpg, 

aes(x =factor(class, 
levels =c("2seater", "subcompact", 

"compact", "midsize", 

"minivan", "suv", "pickup")), 

fill =factor(drv, 

levels =c("f", "r", "4"), 

labels =c("front-wheel", 

"rear-wheel", 

"4-wheel")))) + 

geom_bar(position ="fill") + 

scale_y_continuous(breaks =seq(0, 1, .2), 

label = percent) + 

scale_fill_brewer(palette ="Set2") + 

labs(y ="Percent", 

fill ="Drive Train", 

x ="Class", 

title ="Automobile Drive by Class") + 

theme_minimal() 

https://rkabacoff.github.io/datavis/Models.html#Mosaic
https://rkabacoff.github.io/datavis/Data.html#Salaries
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vs. academic salary (salary) for college professors. 
 

 

 

Figure: Simple scatterplot 

 
Adding best fit lines 

 

It is often useful to summarize the relationship displayed in the scatterplot, using a best fit line. 

Many types of lines are supported, including linear, polynomial, and nonparametric (loess). By 

default, 95% confidence limits for these lines are displayed. 
 

 

Figure: Scatterplot with linear fit line 

 
Line plot 

 

When one of the two variables represents time, a line plot can be an effective method of display- 

ing relationship. For example, the code below displays the relationship between time ( year) and 

life expectancy (lifeExp) in the United States between 1952 and 2007. The data comes from 

the gapminder dataset. 

library(ggplot2) 

data(Salaries, package="carData") 

# simple scatterplot 

ggplot(Salaries, 

aes(x =yrs.since.phd, 

y = salary)) + 

geom_point() 

# scatterplot with linear fit line 
ggplot(Salaries, 

aes(x =yrs.since.phd, 

y = salary)) + 

geom_point(color="steelblue") + 

geom_smooth(method ="lm") 

https://rkabacoff.github.io/datavis/Data.html#Gapminder
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Figure: Simple line plot 

 
Categorical vs. Quantitative 

 

When plotting the relationship between a categorical variable and a quantitative variable, a large 

number of graph types are available. These include bar charts using summary statistics, grouped 

kernel density plots, side-by-side box plots, side-by-side violin plots, mean/sem plots, ridgeline 

plots, and Cleveland plots. 

 
Bar chart (on summary statistics) 

 

In previous sections, bar charts were used to display the number of cases by category for a single 

variable or for two variables. You can also use bar charts to display other summary statistics 

(e.g., means or medians) on a quantitative variable for each level of a categorical variable. 

For example, the following graph displays the mean salary for a sample of university professors 

by their academic rank. 

data(gapminder, package="gapminder") 
 

# Select US cases 

library(dplyr) 

plotdata<-filter(gapminder, 

country == "United States") 

# simple line plot 

ggplot(plotdata, 

aes(x = year, 

y =lifeExp)) + 

geom_line() 

https://rkabacoff.github.io/datavis/Univariate.html#Barchart
https://rkabacoff.github.io/datavis/Univariate.html#Barchart
https://rkabacoff.github.io/datavis/Bivariate.html#Categorical-Categorical
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Figure: Bar chart displaying means 

 
Grouped kernel density plots 

 

One can compare groups on a numeric variable by superimposing kernel density plots in a single 

graph. 
 

 

Figure: Grouped kernel density plots 

data(Salaries, package="carData") 
 

# calculate mean salary for each rank 

library(dplyr) 

plotdata<-Salaries %>% 

group_by(rank) %>% 

summarize(mean_salary =mean(salary)) 

 

# plot mean salaries 

ggplot(plotdata, 

aes(x = rank, 

y =mean_salary)) + 

geom_bar(stat ="identity") 

# plot the distribution of salaries 

# by rank using kernel density plots 
ggplot(Salaries, 

aes(x = salary, 

fill = rank)) + 

geom_density(alpha =0.4) + 

labs(title ="Salary distribution by rank") 

https://rkabacoff.github.io/datavis/Univariate.html#Kernel
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Box plots 
 

A boxplot displays the 25th percentile, median, and 75th percentile of a distribution. The whiskers 

(vertical lines) capture roughly 99% of a normal distribution, and observations outside this range 

are plotted as points representing outliers (see the figure below). 

 

 
 

 
Side- 

by-side box plots are very useful for comparing groups (i.e., the levels of a categorical variable) 

on a numerical 

variable. 

 

 

 

 

 

 

 
 

Figure: Side-by-side boxplots 

 
Violin plots 

 

Violin plots are similar to kernel density plots, but are mirrored and rotated 90o. 
 

# plot the distribution of salaries by rank using boxplots 
ggplot(Salaries, 
aes(x = rank, 

y = salary)) + 

geom_boxplot() + 

labs(title ="Salary distribution by rank") 

# plot the distribution of salaries 

# by rank using violin plots 

ggplot(Salaries, 

aes(x = rank, 

y = salary)) + 

geom_violin() + 

labs(title ="Salary distribution by rank") 

https://rkabacoff.github.io/datavis/Univariate.html#Kernel
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Figure: Side-by-side violin plots 

 
Ridgeline plots 

 

A ridgeline plot (also called a joyplot) displays the distribution of a quantitative variable for sev- 

eral groups. They’re similar to kernel density plots with vertical faceting, but take up less room. 

Ridgeline plots are created with the ggridges package. 

Using the Fuel economy dataset, let’s plot the distribution of city driving miles per gallon by car 

class. 
 

 

Figure: Ridgeline graph with color fill 

 
Mean/SEM plots 

 

A popular method for comparing groups on a numeric variable is the mean plot with error bars. 

Error bars can represent standard deviations, standard error of the mean, or confidence intervals. 

In this section, we’ll plot means and standard errors. 

# create ridgeline graph 

library(ggplot2) 

library(ggridges) 
 

ggplot(mpg, 

aes(x =cty, 

y = class, 

fill = class)) + 

geom_density_ridges() + 

theme_ridges() + 

labs("Highway mileage by auto class") + 

theme(legend.position ="none") 

https://rkabacoff.github.io/datavis/Univariate.html#Kernel
https://rkabacoff.github.io/datavis/Multivariate.html#Faceting
https://rkabacoff.github.io/datavis/Data.html#MPG
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The resulting dataset is given below. 

 

Table 4.1: Plot data 

Rank n mean sd se ci 

AsstProf 67 80775.99 8174.113 998.6268 1993.823 

AssocProf 64 93876.44 13831.700 1728.9625 3455.056 

Prof 266 126772.11 27718.675 1699.5410 3346.322 

 
# plot the means and standard errors 

ggplot(plotdata, 

aes(x = rank, 

y = mean, 

group =1)) + 

geom_point(size =3) + 
geom_line() + 

geom_errorbar(aes(ymin = mean -se, 

ymax = mean +se), 

w idth = .1) 

  

# calculate means, standard deviations, 

# standard errors, and 95% confidence 

# intervals by rank 

library(dplyr) 

plotdata<-Salaries %>% 

group_by(rank) %>% 

summarize(n =n(), 

mean =mean(salary), 

sd =sd(salary), 

se =sd/sqrt(n), 

ci =qt(0.975, df = n -1) *sd/sqrt(n)) 
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Figure: Mean plots with standard error bars 

 
Strip plots 

 

The relationship between a grouping variable and a numeric variable can be displayed with a 

scatter plot. For example 
 

 

Figure: Categorical by quantiative scatterplot 

 
Combining jitter and boxplots 

 

It may be easier to visualize distributions if we add boxplots to the jitter plots. 
 

# plot the distribution of salaries 

# by rank using strip plots 

ggplot(Salaries, 

aes(y = rank, 

x = salary)) + 

geom_point() + 

# plot the distribution of salaries 

# by rank using jittering 

library(scales) 

ggplot(Salaries, 

aes(x =factor(rank, 

labels =c("Assistant\nProfessor", 

Associate\nProfessor", 

"Full\nProfessor")), 
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Figure: Jitter plot with superimposed box plots 

 
Beeswarm Plots 

 

Beeswarm plots (also called violin scatter plots) are similar to jittered scatterplots, in that they 

display the distribution of a quantitative variable by plotting points in way that reduces overlap. 

In addition, they also help display the density of the data at each point (in a manner that is simi- 

lar to a violin plot). Continuing the previous example 

color = rank)) + 

geom_boxplot(size=1, 

outlier.shape =1, 

outlier.color ="black", 

outlier.size =3) + 

geom_jitter(alpha =0.5, 

width=.2) + 

scale_y_continuous(label = dollar) + 

labs(title ="Academic Salary by Rank", 

subtitle ="9-month salary for 2008-2009", 

x ="", 

y ="") + 

theme_minimal() + 

https://rkabacoff.github.io/datavis/Bivariate.html#ViolinPlot
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Figure: Beeswarm plot 
 

.5.5.3.9 Cleveland Dot Charts 

Cleveland plots are useful when you want to compare a numeric statistic for a large number of 

groups. For example, say that you want to compare the 2007 life expectancy for Asian country 

using the gapminder dataset. 
 

 

Figure: Basic Cleveland dot plot 
 

Multivariate Graphs: 
 

Multivariate graphs display the relationships among three or more variables. There are two 

common methods for accommodating multiple variables: grouping and faceting. 

 
Grouping 

 

In grouping, the values of the first two variables are mapped to the x and y axes. Then additional 

variables are mapped to other visual characteristics such as color, shape, size, line type, and 

transparency. Grouping allows you to plot the data for multiple groups in a single graph. 

Using the Salaries dataset, let’s display the relationship between yrs.since.phd and salary. 

data(gapminder, package="gapminder") 
 

# subset Asian countries in 2007 

library(dplyr) 

plotdata<-gapminder%>% 

filter(continent == "Asia"& 

year ==2007) 

 

# basic Cleveland plot of life expectancy by country 

ggplot(plotdata, 

aes(x=lifeExp, y = country)) + 

geom_point() 

https://rkabacoff.github.io/datavis/Data.html#Gapminder
https://rkabacoff.github.io/datavis/Data.html#Salaries
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Figure: Simple scatterplot 
 

Next, let’s include the rank of the professor, using color. 
 

 

Figure: Scatterplot with color mapping 

 
Faceting 

 

In faceting, a graph consists of several separate plots or small multiples, one for each level of a 

third variable, or combination of variables. It is easiest to understand this with an example. 

library(ggplot2) 

data(Salaries, package="carData") 

# plot experience vs. salary 
ggplot(Salaries, 

aes(x =yrs.since.phd, 

y = salary)) + 

geom_point() + 

labs(title ="Academic salary by years since degree") 

# plot experience vs. salary (color represents rank) 
ggplot(Salaries, aes(x =yrs.since.phd, 

y = salary, 

color=rank)) + 

geom_point() + 

labs(title ="Academic salary by rank and years since degree") 
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Figure: Salary distribution by rank 
 

The facet_wrap function creates a separate graph for each level of rank. The ncol option controls 

the number of columns. 

 

 

 

 
***** 

# plot salary histograms by rank 

ggplot(Salaries, aes(x = salary)) + 

geom_histogram(fill ="cornflowerblue", 

color ="white") + 

facet_wrap(~rank, ncol =1) + 

labs(title ="Salary histograms by rank") 


	DIGITAL NOTES
	DATA SCIENCE (R20A6703)
	(AutonomousInstitution–UGC,Govt.ofIndia)
	Introduction to Data Science and Overview of R
	Roles in a data science project
	PROJECT SPONSOR
	KEEP THE SPONSOR INFORMED AND INVOLVED
	CLIENT
	DATA SCIENTIST
	DATA ARCHITECT
	OPERATIONS
	The Lifecycle of Data Science
	1. Problem identification
	2. Business Understanding
	 KPI (Key Performance Indicator)
	 SLA (Service Level Agreement)
	3. Collecting Data
	4. Pre-processing data
	5. Analyzing data
	6. Data Modelling
	7. Model Evaluation/ Monitoring
	 Data Drift Analysis
	 Model Drift Analysis
	8. Model Training
	9. Model Deployment
	10. Driving insights and generating BI reports
	11. Taking a decision based on insight
	Setting Expectations
	Features Of R
	2) Platform Independent
	3) Machine Learning Operations
	4) Exemplary support for data wrangling
	5) Quality plotting and graphing
	6) The array of packages
	7) Statistics
	8) Continuously Growing
	Limitations of R
	2) Basic Security
	3) Complicated Language
	4) Weak Origin
	5) Lesser Speed
	Basic Data Types The Numeric Type
	The Integer Type
	The Complex Type
	The Logical Type



	Data Structures vectors
	Matrix
	Lists
	Factors
	Accessing components of factor
	Generating Factor Levels
	Example
	Output

	Changing the Order of Levels
	Subsetting R Objects
	Subsetting a Vector
	Subsetting a Matrix
	Subsetting Lists

	Partial Matching
	Removing NA Values
	Control Structures
	if condition
	Syntax:
	Example:
	Output:

	if-else condition
	Syntax:
	Example:
	Output:
	for loop
	Syntax: (1)
	Example: (1)
	Output: (1)

	Nested loops
	for(i in1:3)

	while loop
	Syntax:
	Example:
	Output:

	repeat loop and break statement
	Example:
	Output:

	next statement
	Example:
	Output:

	Functions

	Named Arguments
	Return Value from R Function
	Syntax:
	Output:
	Method 2: R function to return multiple values as a list
	Syntax: (1)
	Output: (1)
	Loading, Exploring and Managing Data
	Reading and Writing Data
	Output:
	Output: (1)
	Output: (2)
	Reading one line at a time
	Output: (3)
	Reading the whole file
	Syntax:
	Output: (4)

	Reading a file in a table format
	Output:
	Output: (1)
	Output: (2)
	Output: (3)
	Output: (4)

	Reading a file from the internet
	Output:

	Reading a CSV File
	Analyzing the CSV File
	Get the maximum salary
	Get the details of the person with max salary
	Get all the people working in IT department
	Get the persons in IT department whose salary is greater than 600
	Get the people who joined on or after 2014

	Writing into a CSV File
	Install xlsx Package
	Verify and Load the "xlsx" Package
	Input as xlsx File

	Reading the Excel File
	Input Data
	Reading XML File
	Get Number of Nodes Present in XML File
	Output
	Details of the First Node
	Get Different Elements of a Node
	Input Data (1)
	Read the JSON File
	Convert JSON to a Data Frame
	Reading in Larger Datasets with read.table
	Loading a large dataset: use fread() or functions from readr instead of read.xxx().
	Data files that don’t fit in memory
	1. Limit the number of lines you read (fread)
	2. Limit the number of columns you read (fread)
	3. Limiting both the number of rows and the number of columns using sqldf
	4. Streaming data
	Working with relational databases
	Loading data with SQL Screwdriver
	Loading data from a database into R
	Data manipulation packages
	1. dplyr Package
	2. data.table Package
	3. reshape2 Package
	4. tidyr Package
	5. Lubridate Package
	UNIT-III
	Modelling Methods-I: Choosing and evaluating Models
	Solving classification problems
	Naive Bayes:
	Decision trees:
	Logistic regression:
	Support vector machines:
	Solving scoring problems
	Linear regression
	Logistic regression
	Working without known targets
	Evaluating models
	Overfitting
	K-fold cross-validation
	Figure : Partitioning data for 3-fold cross-validation
	Measures of model performance
	The null model
	Single-variable models
	Evaluating classification models
	Spam classifications

	CONFUSION MATRIX
	CHANGING A SCORE TO A CLASSIFICATION
	A CCURACY
	ACCURACY IS AN INAPPROPRIATE MEASURE FOR UNBALANCED CLASSES
	PRECISION AND RECALL
	F1
	SENSITIVITY AND SPECIFICITY
	Evaluating scoring models

	ROOT MEAN SQUARE ERROR
	R-SQUARED
	CORRELATION
	DON’T USE CORRELATION TO EVALUATE MODEL QUALITY IN PRODUCTION
	ABSOLUTE ERROR
	Evaluating probability models

	THE RECEIVER OPERATING CHARACTERISTIC CURVE
	LOG LIKELIHOOD
	DEVIANCE
	AIC
	ENTROPY
	UNIT – IV
	Modelling Methods-II: Linear and logistic regression

	USING LINEAR REGRESSION :
	UNDERSTANDING LINEAR REGRESSION :
	INTRODUCING THE PUMS DATASET
	BUILDING A LINEAR REGRESSION MODEL
	MAKING PREDICTIONS:
	UNDERSTANDING LOGISTIC REGRESSION
	BUILDING A LOGISTIC REGRESSION MODEL
	MAKING PREDICTIONS
	UNIT-V
	Data visualization with R
	Introduction to ggplot2: A worked example
	ggplot
	geoms
	geom_point()
	grouping
	scales
	facets
	labels
	themes
	Placing the data and mapping options
	Graphs as objects
	Univariate graphs
	Categorical
	Bar chart
	Percents
	Sorting categories
	Labeling bars
	Overlapping labels
	Pie chart
	Tree map
	Quantitative
	Histogram
	Bins and bandwidths
	Kernel Density plot
	Smoothing parameter
	Dot Chart
	Bivariate Graphs:
	Categorical vs. Categorical
	Stacked bar chart
	Grouped bar chart
	Segmented bar chart
	Improving the color and labeling
	Other plots
	Quantitative vs. Quantitative
	Scatterplot
	Adding best fit lines
	Line plot
	Categorical vs. Quantitative
	Bar chart (on summary statistics)
	Grouped kernel density plots
	Box plots
	Violin plots
	Ridgeline plots
	Mean/SEM plots
	Strip plots
	Combining jitter and boxplots
	Beeswarm Plots
	.5.5.3.9 Cleveland Dot Charts
	Multivariate Graphs:
	Grouping
	Faceting




