
DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

DIGITAL NOTES

ON

DATA SCIENCE

(R20A6703)

B.TECH IV YEAR–I SEM

(R20) REGULATION
(2024-25)

Prepared by Mrs AGNISHA MANDAVA

MALLAREDDY COLLEGE OF ENGINEERING &TECHNOLOGY

(AutonomousInstitution–UGC,Govt.ofIndia)
Recognizedunder2(f)and12(B) ofUGC ACT1956

(AffiliatedtoJNTUH,Hyderabad,ApprovedbyAICTE-AccreditedbyNBA&NAAC–‘A’Grade-

ISO9001:2015Certified)

Maisammaguda,Dhulapally(PostVia.Hakimpet),Secunderabad–500100,TelanganaState,India

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY
IV Year B.Tech. CSE- II Sem L/T/P/C

 3 -/-/3

PROFESSIONALELCTIVE – VI(R20A6703)

DATA SCIENCE

COURSE OBJECTIVES:

The students should be able to:

1. Understand the data science process.

2. Conceive the methods in R to load, explore and manage large data.

3. Choose and evaluate the models for analysis.

4. Describe the regression analysis.

5. Select the methods for displaying the predicted results.

UNIT I: Introduction to Data Science and Overview of R Data Science Process: Roles in

a data science project, Stages in a data science project, Setting expectations. Basic Features

of R, R installation, Basic Data Types: Numeric, Integer, Complex, Logical, Character. Data

Structures: Vectors, Matrix, Lists, Indexing, Named Values, Factors. Subsetting R Objects:

Sub setting a Vector, Matrix, Lists, Partial Matching, Removing NA Values. Control

Structures: if-else, for Loop, while Loop, next, break. Functions: Named Arguments, Default

Parameters, Return Values.

UNIT II: Loading, Exploring and Managing Data Working with data from files:

Reading and Writing Data, Reading Data Files with read.table (), Reading in Larger Datasets
with read.table. Working with relational databases. Data manipulation packages: dplyr,

data.table, reshape2, tidyr, lubridate.

UNIT III:Modelling Methods-I: Choosing and evaluating Models Mapping problems to

machine learning tasks: Classification problems, Scoring problems, Grouping: working

without known targets, Problem-to-method mapping, Evaluating models: Over fitting,

Measures of model performance, Evaluating classification models, Evaluating scoring

models, Evaluating probability model.

UNIT IV: Modelling Methods-II: Linear and logistic regression Using linear regression:

Understanding linear regression, Building a linear regression model, making predictions.

Using logistic regression: Understanding logistic regression, Building a logistic regression

model, making predictions.

UNIT V: Data visualization with R:Introduction to ggplot2: A worked example, Placing

the data and mapping options, Graphs as objects, Univariate Graphs: Categorical,

Quantitative. Bivariate Graphs- Categorical vs. Categorical,

Quantitative vs Quantitative, Categorical vs. Quantitative, Multivariate Graphs :

Grouping, Faceting.

TEXT BOOKS:

1. Practical Data Science with R, Nina Zumel & John Mount , Manning

PublicationsNY, 2014.

2. Beginning Data Science in R-Data Analysis, Visualization, and Modellingfor the

Data Scientist - Thomas Mailund –Apress -2017.

REFERENCE BOOKS:

1. The Comprehensive R Archive Network- https://cran.r-project.org.

2. R for Data Science by Hadley Wickham and Garrett Grolemund , 2017 ,Published

by OReilly Media, Inc.

3. R Programming for Data Science -Roger D. Peng, 2015 , Lean Publishing.

4. https://rkabacoff.github.io/datavis/IntroGGPLOT.html.

COURSE OUTCOMES:

The students will be able to:

1. Analyze the basics in R programming in terms of constructs, control

statements,Functions.

2. Implement Data Preprocessing using R Libraries.

3. Apply the R programming from a statistical perspective and ModelingMethods.

4. Build regression models for a given problem.

5. Illustrate R programming tools for Graphs.

INDEX

S.NO UNIT TOPIC PAGE NO

1

I

Introduction to Data Science and

Overview of R Data Science Process

1-25

2

II

Loading, Exploring and Managing

Data Working with data from files

26-50

3

III

Modelling Methods-I

51-65

4

IV

Modelling Methods-II

66-75

5

V

Data visualization with R

76-106

Data Science A.Y. 2024-2025

Department of CSE Page 1

UNIT-I

Introduction to Data Science and Overview of R

Data Science Process: Roles in a data science project, Stages in a data science project,

Setting expectations. Basic Features of R, R installation, Basic Data Types: Numeric,

Integer, Complex, Logical, Character. Data Structures: Vectors, Matrix, Lists,

Indexing, Named Values, Factors. Subsetting R Objects: Sub setting a Vector,

Matrix, Lists, Partial Matching, Removing NA Values. Control Structures: if-else, for

Loop, while Loop, next, break. Functions: Named Arguments , Default Parameters,

Return Values.

Roles in a data science project

PROJECT SPONSOR

The most important role in a data science project is the project sponsor. The sponsor is the person

who wants the data science result; generally they represent the business interests. The sponsor is

responsible for deciding whether the project is a success or failure. The ideal sponsor meets the fol-

lowing condition: if they’re satisfied with the project outcome, then the project is by definition a

success.

KEEP THE SPONSOR INFORMED AND INVOLVED

It’s critical to keep the sponsor informed and involved. Show them plans, progress, and intermedi-

ate successes or failures in terms they can understand.

CLIENT

While the sponsor is the role that represents the business interest, the client is the role that repre-

sents the model’s end users’ interests. The client is more hands-on than the sponsor; they’re the in-

terface between the technical details of building a good model and the day-to-day work process into

which the model will be deployed. They aren’t necessarily mathematically or statistically sophisti-

cated, but are familiar with the relevant business processes and serve as the domain expert on the

team.As with the sponsor, you should keep the client informed and involved. Ideally you’d like to

have regular meetings with them to keep your efforts aligned with the needs of the end users.

Data Science A.Y. 2024-2025

Department of CSE Page 2

DATA SCIENTIST

The next role in a data science project is the data scientist, who’s responsible for taking all neces-

sary steps to make the project succeed, including setting the project strategy and keeping the client

informed. They design the project steps, pick the data sources, and pick the tools to be used. Since

they pick the techniques that will be tried, they have to be well informed about statistics and ma-

chine learning. They’re also responsible for project planning and tracking, though they may do this

with a project management partner.

DATA ARCHITECT

The data architect is responsible for all of the data and its storage. Often this role is filled by some-

one outside of the data science group, such as a database administrator or architect. Data architects

often manage data warehouses for many different projects, and they may only be available for quick

consultation.

OPERATIONS

The operations role is critical both in acquiring data and delivering the final results. The person fill-

ing this role usually has operational responsibilities outside of the data science group. For example,

if you’re deploying a data science result that affects how products are sorted on an online shopping

site, then the person responsible for running the site will have a lot to say about how such a thing

can be deployed. This person will likely have constraints on response time, programming language,

or data size that you need to respect in deployment. The person in the operations role may already

be supporting your sponsor or your client, so they’re often easy to find.

The Lifecycle of Data Science

The major steps in the life cycle of Data Science project are as follows:

1. Problem identification

This is the crucial step in any Data Science project. First thing is understanding in what way Data

Science is useful in the domain under consideration and identification of appropriate tasks which

are useful for the same. Domain experts and Data Scientists are the key persons in the problem

identification of problem. Domain expert has in depth knowledge of the application domain and

exactly what is the problem to be solved. Data Scientist understands the domain and help in

identification of problem and possible solutions to the problems.

2. Business Understanding

Understanding what customer exactly wants from the business perspective is nothing but Business

Understanding. Whether customer wish to do predictions or want to improve sales or minimise the

loss or optimise any particular process etc forms the business goals. During business understanding

two important steps are followed:

https://www.knowledgehut.com/blog/data-science/data-science-projects-for-begginers-and-experts

Data Science A.Y. 2024-2025

Department of CSE Page 3

 KPI (Key Performance Indicator)

For any data science project, key performance indicators define the performance or success of the

project. There is a need to be an agreement between the customer and data science project team

on Business related indicators and related data science project goals. Depending on the business

need the business indicators are devised and then accordingly the data science project

team decides the goals and indicators. To better understand this let us see an example. Suppose the

business need is to optimise the overall spendings of the company, then the data science goal will

be to use the existing resources to manage double the clients. Defining the Key performance

Indicators is very crucial for any data science projects as the cost of the solutions will be different

for different goals.

 SLA (Service Level Agreement)

Once the performance indicators are set then finalizing the service level agreement is important. As

per the business goals the service level agreement terms are decided. For example, for any airline

reservation system simultaneous processing of say 1000 users is required. Then the product must

satisfy this service requirement is the part of service level agreement. Once the performance

indicators are agreed and service level agreement is completed then the project proceeds to the next

important step.

3. Collecting Data

The basic data collection can be done using the surveys. Generally, the data collected through

surveys provide important insights. Much of the data is collected from the various processes

followed in the enterprise. At various steps the data is recorded in various software systems used in

the enterprise which is important to understand the process followed from the product development

to deployment and delivery. The historical data available through archives is also important to

betterunderstand the business. Transactional data also plays a vital role as it is collected on a daily

basis. Many statistical methods are applied to the data to extract the important information related to

business. In data science project the major role is played by data and so proper data collection

methods are important.

4. Pre-processing data

Large data is collected from archives, daily transactions and intermediate records. The data is

available in various formats and in various forms. Some data may be available in hard copy formats

also. The data is scattered at various places on various servers. All these data are extracted and

converted into single format and then processed. Typically, as data warehouse is constructed where

the Extract, Transform and Loading (ETL) process or operations are carried out. In the data science

project this ETL operation is vital and important. A data architect role is important in this stage who

decides the structure of data warehouse and perform the steps of ETL operations.

5. Analyzing data

Now that the data is available and ready in the format required then next important step is to

understand the data in depth. This understanding comes from analysis of data using various

https://www.knowledgehut.com/blog/data-science/statistical-analysis-in-data-science

Data Science A.Y. 2024-2025

Department of CSE Page 4

statistical tools available. A data engineer plays a vital role in analysis of data. This step is also

called as Exploratory Data Analysis (EDA). Here the data is examined by formulating the various

statistical functions and dependent and independent variables or features are identified. Careful

analysis of data revels which data or features are important and what is the spread of data. Various

plots are utilized to visualize the data for better understanding. The tools like Tableau, PowerBI etc

are famous for performing Exploratory Data Analysis and Visualization. Knowledge of Data

Science with Python and R is important for performing EDA on any type of data.

6. Data Modelling

Data modelling is the important next step once the data is analysed and visualized. The important

components are retained in the dataset and thus data is further refined. Now the important is to

decide how to model the data? What tasks are suitable for modelling? The tasks, like classification

or regression, which is suitable is dependent upon what business value is required. In these tasks

also many ways of modelling are available. The Machine Learning engineer applies various

algorithms to the data and generates the output. While modelling the data many a times the models

are first tested on dummy data similar to actual data.

7. Model Evaluation/ Monitoring

As there are various ways to model the data so it is important to decide which one is effective. For

that model evaluation and monitoring phase is very crucial and important. The model is now tested

with actual data. The data may be very few and in that case the output is monitored for

improvement. There may be changes in data while model is being evaluated or tested and the output

will drastically change depending on changes in data. So, while evaluating the model following two

phases are important:

 Data Drift Analysis

Changes in input data is called as data drift. Data drift is common phenomenon in data science as

depending on the situation there will be changes in data. Analysis of this change is called Data Drift

Analysis. The accuracy of the model depends on how well it handles this data drift. The changes in

data are majorly because of change in statistical properties of data.

 Model Drift Analysis

To discover the data drift machine learning techniques can be used. Also, more sophisticated

methods like Adaptive Windowing, Page Hinkley etc. are available for use. Modelling Drift

Analysis is important as we all know change is constant. Incremental learning also can be used

effectively where the model is exposed to new data incrementally.

8. Model Training

Once the task and the model are finalised and data drift analysis modelling is finalized then the

important step is to train the model. The training can be done is phases where the important

parameters can be further fine tuned to get the required accurate output. The model is exposed to the

actual data in production phase and output is monitored.

https://www.knowledgehut.com/data-science/data-science-with-python-certification-training
https://www.knowledgehut.com/data-science/data-science-with-python-certification-training

Data Science A.Y. 2024-2025

Department of CSE Page 5

9. Model Deployment

Once the model is trained with the actual data and parameters are fine tuned then model is deployed.

Now the model is exposed to real time data flowing into the system and output is generated. The

model can be deployed as web service or as an embedded application in edge or mobile application.

This is very important step as now model is exposed to real world.

10. Driving insights and generating BI reports

After model deployment in real world, next step is to find out how model is behaving in real world

scenario. The model is used to get the insights which aid in strategic decisions related to business.

The business goals are bound to these insights. Various reports are generated to see how business is

driving. These reports help in finding out if key process indicators are achieved or not.

11. Taking a decision based on insight

For data science to make wonders, every step indicated above has to be done very carefully and

accurately. When the steps are followed properly then the reports generated in above step helps in

taking key decisions for the organization. The insights generated helps in taking strategic decisions

like for example the organization can predict that there will be need of raw material in advance. The

data science can be of great help in taking many important decisions related to business growth and

better revenue generation.

Setting Expectations

Developing expectations is the process of deliberately thinking about what you expect before you

do anything, such as inspect your data, perform a procedure, or enter a command. For experienced

data analysts, in some circumstances, developing expectations may be an automatic, almost

subconscious process, but it’s an important activity to cultivate and be deliberate about.For

example,you may be going out to dinner with friends at a cash-only establishment and need to stop

by the ATM to withdraw money before meeting up. To make a decision about the amount of money

you’regoing to withdraw, you have to have developed some expectation of the cost of dinner. This

may be an automatic expectation because you dine at this establishment regularly so you know what

the typical cost of a meal is there, which would be an example of a priori knowledge. Another

example of a priori knowledge would be knowing what a typical meal costs at a restaurant in your

city, or knowing what a meal at the most expensive restaurants in your city costs. Using that

information, you could perhaps place an upper and lower bound on how much the meal will

cost.You may have also sought out external information to develop your expectations, which could

include asking your friends who will be joining you or who have eaten at the restaurant before

and/or Googling the restaurant to find general cost information online or a menu with prices. This

same process, in which you use any a priori information you have and/or external sources to

determine what you expect when you inspect your data or execute an analysis procedure, applies to

each core activity of the data analysis process.

Features Of R

1) Open Source

An open-source language is a language on which we can work without any need for a license or a

Data Science A.Y. 2024-2025

Department of CSE Page 6

fee. R is an open-source language. We can contribute to the development of R by optimizing our

packages, developing new ones, and resolving issues.

2) Platform Independent

R is a platform-independent language or cross-platform programming language which means its

code can run on all operating systems. R enables programmers to develop software for several

competing platforms by writing a program only once. R can run quite easily on Windows, Linux,

and Mac.

3) Machine Learning Operations

R allows us to do various machine learning operations such as classification and regression. For this

purpose, R provides various packages and features for developing the artificial neural network. R is

used by the best data scientists in the world.

4) Exemplary support for data wrangling

R allows us to perform data wrangling. R provides packages such as dplyr, readr which are capable

of transforming messy data into a structured form.

5) Quality plotting and graphing

R simplifies quality plotting and graphing. R libraries such as ggplot2 and plotly advocates for

visually appealing and aesthetic graphs which set R apart from other programming languages.

6) The array of packages

R has a rich set of packages. R has over 10,000 packages in the CRAN repository which are

constantly growing. R provides packages for data science and machine learning operations.

7) Statistics

R is mainly known as the language of statistics. It is the main reason why R is predominant than

other programming languages for the development of statistical tools.

8) Continuously Growing

R is a constantly evolving programming language. Constantly evolving means when something

evolves, it changes or develops over time, like our taste in music and clothes, which evolve as we

get older. R is a state of the art which provides updates whenever any new feature is added.

Limitations of R

1) Data Handling

In R, objects are stored in physical memory. It is in contrast with other programming languages like

Python. R utilizes more memory as compared to Python. It requires the entire data in one single

place which is in the memory. It is not an ideal option when we deal with Big Data.

Data Science A.Y. 2024-2025

Department of CSE Page 7

2) Basic Security

R lacks basic security. It is an essential part of most programming languages such as Python.

Because of this, there are many restrictions with R as it cannot be embedded in a web-application.

3) Complicated Language

R is a very complicated language, and it has a steep learning curve. The people who don’t have

prior knowledge or programming experience may find it difficult to learn R.

4) Weak Origin

The main disadvantage of R is, it does not have support for dynamic or 3D graphics. The reason

behind this is its origin. It shares its origin with a much older programming language “S.”

5) Lesser Speed

R programming language is much slower than other programming languages such as MATLAB and

Python. In comparison to other programming language, R packages are much slower.

In R, algorithms are spread across different packages. The programmers who have no prior

knowledge of packages may find it difficult to implement algorithms.

Basic Data Types

The Numeric Type

The numeric type is what you get any time you write a number into R. You can test if an object is
numeric using the is.numeric function or by getting the class object.

is.numeric(2)

[1] TRUE

class(2)

[1] "numeric"

The Integer Type

The integer type is used for, well, integers. Surprisingly, the 2 is not an integer in R. It is a numeric

type which is the larger type that contains all floating-point numbers as well as integers. To get an

integer you have to make the value explicitly an integer, and you can do that using the function
as.integer or writing L after the literal.

is.integer(2)

[1] FALSE

is.integer(2L)

[1] TRUE

x <- as.integer(2)

is.integer(x)

[1] TRUE

class(x)

[1] "integer"

If you translate a non-integer into an integer, you just get the integer part.

as.integer(3.2)

[1] 3

as.integer(9.9)

Data Science A.Y. 2024-2025

Department of CSE Page 8

[1] 9

The Complex Type

If you ever find that you need to work with complex numbers, R has those as well. You construct

them by adding an imaginary number—a number followed by i—to any number or explicitly using

the function as. complex. The imaginary number can be zero, 0i, which creates a complex number

that only has a non-zero real part.

1 + 0i

[1] 1+0i
is.complex(1 + 0i)
[1] TRUE

class(1 + 0i)

[1] "complex"

sqrt(as.complex(-1))

[1] 0+1i

The Logical Type

Logical values are what you get if you explicitly type in TRUE or FALSE, but it is also what you

get if you make, for example, a comparison.

x <- 5 > 4

x

[1] TRUE

class(x)

[1] "logical"

is.logical(x)
[1] TRUE

The Character Type

Finally, characters are what you get when you type in a string such as "hello, world".

x <- "hello, world"

class(x)

[1] "character"

is.character(x)

[1] TRUE

Unlike in some languages, character doesn’t mean a single character but any text. So it is not like in

C

or Java where you have single character types, 'c', and multi-character strings, "string", they are

both just

characters.
You can, similar to the other types, explicitly convert a value into a character (string) using as.
character:

as.character(3.14)

[1] "3.14"

Unlike in some languages, character doesn’t mean a single character but any text. So it is not like in
C

or Java where you have single character types, 'c', and multi-character strings, "string", they are
both just

characters.

You can, similar to the other types, explicitly convert a value into a character (string) using as.

character:

as.character(3.14)

[1] "3.14"

Data Science A.Y. 2024-2025

Department of CSE Page 9

Data

Structures

vectors
vectors, which are sequences of values all of the same type.

v <- c(1, 2, 3)
or through some other operator or function, e.g., the : operator or the rep function
1:3

[1] 1 2 3

rep("foo", 3)

[1] "foo""foo""foo"

We can test if something is this kind of vector using the is.atomic function:

v <- 1:3

is.atomic(v)

[1] TRUE

v <- 1:3
is.vector(v)
[1] TRUE

It is just that R only consider such a sequence a vector—in the sense that is.vector returns TRUE—

if the object doesn’t have any attributes (except for one, names, which it is allowed to have)
Attributes are meta-information associated with an object, and not something we will deal with

much here, but you just have to know that is.vector will be FALSE if something that is a

perfectly goodvector gets an attribute.v <- 1:3

is.vector(v)

[1] TRUE

attr(v, "foo") <- "bar"

v

[1] 1 2 3

attr(,"foo")

[1] "bar"

is.vector(v)

[1] FALSE

So if you want to test if something is the kind of vector I am talking about here, use is.atomic

instead. When you concatenate (atomic) vectors, you always get another vector back. So when you

combine several c() calls you don’t get any kind of tree structure if you do something like this:

c(1, 2, c(3, 4), c(5, 6, 7))

[1] 1 2 3 4 5 6 7

The type might change, if you try to concatenate vectors of different types, R will try to translate the

type

into the most general type of the vectors.

c(1, 2, 3, "foo")

[1] "1""2""3""foo"

Matrix
If you want a matrix instead of a vector, what you really want is just a two-dimensional vector. You

can set the dimensions of a vector using the dim function—it sets one of those attributes we talked

about previously—where you specify the number of rows and the number of columns you want the

matrix to have.

v <- 1:6
attributes(v)

NULL

Data Science A.Y. 2024-2025

Department of CSE Page 10

dim(v) <- c(2, 3)

attributes(v)

$dim

[1] 2 3
dim(v)
[1] 2 3

v

[,1] [,2] [,3]
[1,] 1 3 5

[2,] 2 4 6

When you do this, the values in the vector will go in the matrix column-wise, i.e., the values in the

vector will go down the first column first and then on to the next column and so forth. You can use the

convenience function matrix to create matrices and there you can specify if you want

the values to go by column or by row using the by row
parameter.v <- 1:6

matrix(data = v, nrow = 2, ncol = 3, byrow = FALSE)

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

matrix(data = v, nrow = 2, ncol = 3, byrow = TRUE)
[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

the * operator will not do matrix multiplication. You use * if you want to make element-wise

multiplication; for matrix multiplication you need the operator %*% instead.

(A <- matrix(1:4, nrow = 2))

[,1] [,2]

[1,] 1 3

[2,] 2 4

(B <- matrix(5:8, nrow = 2))

[,1] [,2]

[1,] 5 7

[2,] 6 8

A * B

[,1] [,2]

[1,] 5 21

[2,] 12 32

A %*% B

[,1] [,2]

[1,] 23 31

[2,] 34 46

If you want to transpose a matrix, you use the t function and, if you want to invert it, you use the

solve function.

t(A)

[,1] [,2]
[1,] 1 2

[2,] 3 4

solve(A)

[,1] [,2]

[1,] -2 1.5

[2,] 1 -0.5

Data Science A.Y. 2024-2025

Department of CSE Page 11

Lists
Lists, like vectors, are sequences, but unlike vectors, the elements of a list can be any kind of

objects, and they do not have to be the same type of objects. This means that you can construct more
complexdata structures out of lists.

For example, we can make a list of two vectors:

list(1:3, 5:8)

[[1]]
[1] 1 2 3

[[2]]

[1] 5 6 7 8

Notice how the vectors do not get concatenated like they would if we combined them with c(). The
result of this command is a list of two elements that happens to be both vectors.

They didn’t have to have the same type either, we could make a list like this, which also consist of

two vectors but vectors of different types:

list(1:3, c(TRUE, FALSE))

[[1]]

[1] 1 2 3

[[2]]

[1] TRUE FALSE

You can flatten a list into a vector using the function unlist(). This will force the elements in the list

to be converted into the same type, of course, since that is required of vectors.

unlist(list(1:4, 5:7))

[1] 1 2 3 4 5 6 7

Indexing

We saw basic indexing in Chapter 1, but there is much more to indexing in R that that. Type ?`[[`

into the R prompt and prepare to be amazed. We have already seen the basic indexing. If you want

the nth element of a vector v, you use v[n]:

v <- 1:4

v[2]

[1] 2

You also know that you can get a subsequence out of the vector using a range

of indices:

v[2:3]

[1] 2 3
Here we are indexing with positive numbers, which makes sense since the elements in the vector

have positive indices, but it is also possible to use negative numbers to index in R. If you do that it

is interpreted as specifying the complement of the values you want. So if you want all elements

except the first element, you can use:

You can also use multiple negative indices to remove some values:

v[-(1:2)]

[1] 3 4

Another way to index is to use a Boolean vector. This vector should be the same length as the

vector you index into, and it will pick out the elements where the Boolean vector is true.

v[v %% 2 == 0]

[1] 2 4

If you want to assign to a vector you just assign to elements you index; as long as the vector to the

right of the assignment operator has the same length as the elements the indexing pulls out you will

be assigning

to the vector.

v[v %% 2 == 0] <- 13

Data Science A.Y. 2024-2025

Department of CSE Page 12

v

[1] 1 13 3 13

If the vector has more than one dimension—remember that matrices and arrays are really just

vectors with more dimensions—then you subset them by subsetting each dimension. If you leave

out a dimension, you will get whole range of values in that dimension, which is a simple way to of

getting rows and columns of

a matrix:

m <- matrix(1:6, nrow = 2, byrow = TRUE)

m

[,1] [,2] [,3]

[1,] 1 2 3
[2,] 4 5 6

m[1,]

[1] 1 2 3

m[,1]

[1] 1 4

You can also index out a submatrix this way by providing ranges in one or more dimensions:

m[1:2,1:2]

[,1] [,2]

[1,] 1 2

[2,] 4 5

If you want to get to the actual element in there, you need to use the [[]] operator instead.

L <- list(1,2,3)

L[[1]]

[1] 1

Named Values

The elements in a vector or a list can have names. These are attributes that do not affect the values

of the

elements but can be used to refer to them. You can set these names when you create the vector or

list:

v <- c(a = 1, b = 2, c = 3, d = 4)

v

a b c d

1 2 3 4

L <- list(a = 1:5, b = c(TRUE, FALSE))

L

$a
[1] 1 2 3 4 5

$b

[1] TRUE FALSE
Or you can set the names using the names<- function. That weird name, by the way, means that you
are dealing with the names() function combined with assignment:

names(v) <- LETTERS[1:4]

v
A B C D
1 2 3 4

You can use names to index vectors and lists (where the [] and [[]] returns either a list or the
element of the list, as before):

v["A"]

A

Data Science A.Y. 2024-2025

Department of CSE Page 13

1

L["a"]

$a

[1] 1 2 3 4 5

L[["a"]]

[1] 1 2 3 4 5

Factors
In the first step,

1. we create a vector.
2. Next step is to convert the vector into a factor,

R provides factor() function to convert the vector into factor. There is the following syntax

offactor() function

factor_data<- factor(vector)

data<-

c("Shubham","Nishka","Arpita","Nishka","Shubham","Sumit","Nishka","Shubham","Sumit

","Arpita","Sumit")

print(data)

print(is.factor(data))

output:[1] "Shubham""Nishka""Arpita""Nishka""Shubham""Sumit""Nishka"

[8] "Shubham""Sumit""Arpita""Sumit"

[1] FALSE

[1] Shubham Nishka Arpita Nishka Shubham Sumit Nishka Shubham Sumit
[10] Arpita Sumit

Levels: Arpita Nishka Shubham Sumit

[1] TRUE

Accessing components of factor

Like vectors, we can access the components of factors. The process of accessing components of

factor is much more similar to the vectors. We can access the element with the help of the indexing

method or using logical vectors. Let's see an example in which we understand the different-different

ways of accessing the components.

Creating a vector as input.

data <-

c("Shubham","Nishka","Arpita","Nishka","Shubham","Sumit","Nishka","Shubham","Sumit","Arpit

a","Sumit")

factor_data<- factor(data)

print(factor_data)

print(factor_data[4])

print(factor_data[c(5,7)])

print(factor_data[-4])

print(factor_data[c(TRUE,FALSE,FALSE,FALSE,TRUE,TRUE,TRUE,FALSE,FALSE,FALSE,T

RUE)])

[1] Shubham Nishka Arpita Nishka Shubham Sumit Nishka Shubham Sumit

[10] Arpita Sumit

Levels: Arpita Nishka Shubham Sumit

[1] Nishka

Levels: Arpita Nishka Shubham Sumit

[1] Shubham Nishka

Levels: Arpita Nishka Shubham Sumit

Data Science A.Y. 2024-2025

Department of CSE Page 14

[1] Shubham Nishka Arpita Shubham Sumit Nishka Shubham Sumit Arpita

[10] Sumit

Levels: Arpita Nishka Shubham Sumit

[1] Shubham Shubham Sumit Nishka Sumit

Levels: Arpita Nishka Shubham Sumit

Modification of factor

Like data frames, R allows us to modify the factor. We can modify the value of a factor by simply

re-assigning it. In R, we cannot choose values outside of its predefined levels means we cannot

insert value if it's level is not present on it. For this purpose, we have to create a level of that value,

and then we can add it to our factor.

data <- c("Shubham","Nishka","Arpita","Nishka","Shubham")
factor_data<- factor(data)

print(factor_data)

factor_data[4] <-"Arpita"

print(factor_data)

factor_data[4] <- "Gunjan"

print(factor_data)

levels(factor_data) <- c(levels(factor_data),"Gunjan")

factor_data[4] <- "Gunjan"

print(factor_data)

[1] Shubham Nishka Arpita Nishka Shubham

Levels: Arpita Nishka Shubham

[1] Shubham Nishka Arpita Arpita Shubham

Levels: Arpita Nishka Shubham

Warning message:

In ̀ [<-.factor`(`*tmp*`, 4, value = "Gunjan") :

invalid factor level, NA generated

[1] Shubham Nishka Arpita <NA> Shubham

Levels: Arpita Nishka Shubham

[1] Shubham Nishka Arpita Gunjan Shubham

Levels: Arpita Nishka Shubham Gunjan

Generating Factor Levels
R provides gl() function to generate factor levels. This function takes three arguments i.e., n, k, and

labels. Here, n and k are the integers which indicate how many levels we want and how many times

each level is required.

There is the following syntax of gl() function which is as follows

1. gl(n, k, labels)

1. n indicates the number of levels.

2. k indicates the number of replications.

3. labels is a vector of labels for the resulting factor levels.

Example

1. gen_factor<- gl(3,5,labels=c("BCA","MCA","B.Tech"))

2. gen_factor

Output

[1] BCA BCA BCA BCA BCA MCA MCA MCA MCA MCA

[11] B.Tech B.Tech B.Tech B.Tech B.Tech

Levels: BCA MCA B.Tech

height <- c(132,151,162,139,166,147,122)

Data Science A.Y. 2024-2025

Department of CSE Page 15

weight <- c(48,49,66,53,67,52,40)

gender <- c("male","male","female","female","male","female","male")

input_data <- data.frame(height,weight,gender)

print(input_data)

print(is.factor(input_data$gender))

print(input_data$gender)

When we execute the above code, it produces the following result −

height weight gender

1 132 48 male

2 151 49 male

3 162 66 female

4 139 53 female
5 166 67 male
6 147 52 female

7 122 40 male

[1] TRUE

[1] male male female female male female male

Levels: female male

Changing the Order of Levels
The order of the levels in a factor can be changed by applying the factor function again with new

order of the levels.

data <- c("East","West","East","North","North","East","West",

"West","West","East","North")

factor_data <- factor(data)

print(factor_data)

new_order_data <- factor(factor_data,levels = c("East","West","North"))

print(new_order_data)

When we execute the above code, it produces the following result −

[1] East West East North North East West West West East North

Levels: East North West

[1] East West East North North East West West West East North

Levels: East West North

Subsetting R Objects
There are three operators that can be used to extract subsets of R objects.

 The [operator always returns an object of the same class as the original. It can be used to

select multiple elements of an object

 The [[operator is used to extract elements of a list or a data frame. It can only be used to

extract a single element and the class of the returned object will not necessarily be a list or

data frame.

 The $ operator is used to extract elements of a list or data frame by literal name. Its

semantics are similar to that of [[.

Subsetting a Vector
Vectors are basic objects in R and they can be subsetted using the [operator.

> x <- c("a", "b", "c", "c", "d", "a")

> x[1] ## Extract the first element

[1] "a"

> x[2] ## Extract the second element

Data Science A.Y. 2024-2025

Department of CSE Page 16

[1] "b"

The [operator can be used to extract multiple elements of a vector by passing the operator an

integer sequence. Here we extract the first four elements of the vector.

> x[1:4]

[1] "a""b""c""c"

The sequence does not have to be in order; you can specify any arbitrary integer vector.

> x[c(1, 3, 4)]

[1] "a""c""c"

We can also pass a logical sequence to the [operator to extract elements of a vector that satisfy a

given condition. For example, here we want the elements of x that come lexicographically after the

letter “a”.

> u <- x >"a"

> u

[1] FALSE TRUE TRUE TRUE TRUE FALSE

> x[u]

[1] "b""c""c""d"

Another, more compact, way to do this would be to skip the creation of a logical vector and just

subset the vector directly with the logical expression

> x[x >"a"]

[1] "b""c""c""d"

Subsetting a Matrix

Matrices can be subsetted in the usual way with (i,j) type indices. Here, we create simple 2×3

matrix with the matrix function.

> x <- matrix(1:6, 2, 3)

> x

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

We can access the (1,2)

or the (2,1)

element of this matrix using the appropriate indices.

> x[1, 2]

[1] 3

> x[2, 1]

[1] 2

Indices can also be missing. This behavior is used to access entire rows or columns of a matrix.

> x[1,] ## Extract the first row

[1] 1 3 5

> x[, 2] ## Extract the second column

[1] 3 4

Data Science A.Y. 2024-2025

Department of CSE Page 17

Subsetting Lists
Lists in R can be subsetted using all three of the operators mentioned above, and all three are used

for different purposes.

> x <- list(foo = 1:4, bar = 0.6)

> x

$foo

[1] 1 2 3 4

$bar

[1] 0.6

The [[operator can be used to extract single elements from a list. Here we extract the first element

of the list.

> x[[1]]

[1] 1 2 3 4

The [[operator can also use named indices so that you don’t have to remember the exact ordering of

every element of the list. You can also use the $ operator to extract elements by name.

> x[["bar"]]

[1] 0.6

> x$bar

[1] 0.6

Notice you don’t need the quotes when you use the $ operator.

One thing that differentiates the [[operator from the $ is that the [[operator can be used with

computed indices. The $ operator can only be used with literal names.

> x <- list(foo = 1:4, bar = 0.6, baz = "hello")

> name <- "foo"
>
> ## computed index for "foo"

> x[[name]]

[1] 1 2 3 4

> ## element "name" doesn’t exist! (but no error here)

> x$name

NULL

>
> ## element "foo" does exist

> x$foo

[1] 1 2 3 4

Partial Matching

Partial matching of names is allowed with [[and $. This is often very useful during interactive work

if the object you’re working with has very long element names. You can just abbreviate those names

and R will figure out what element you’re referring to.

> x <- list(aardvark = 1:5)

> x$a

[1] 1 2 3 4 5

Data Science A.Y. 2024-2025

Department of CSE Page 18

> x[["a"]]

NULL

> x[["a", exact = FALSE]]

[1] 1 2 3 4 5
>

Removing NA Values

A common task in data analysis is removing missing values (NAs).

> x <- c(1, 2, NA, 4, NA, 5)

> bad <- is.na(x)

> print(bad)

[1] FALSE FALSE TRUE FALSE TRUE FALSE

> x[!bad]

[1] 1 2 4 5

What if there are multiple R objects and you want to take the subset with no missing values in any

of those objects?

> x <- c(1, 2, NA, 4, NA, 5)

> y <- c("a", "b", NA, "d", NA, "f")
> good <- complete.cases(x, y)

> good

[1] TRUE TRUE FALSE TRUE FALSE TRUE

> x[good]

[1] 1 2 4 5

> y[good]

[1] "a""b""d""f"

Control Structures

if condition
This control structure checks the expression provided in parenthesis is true or not. If true, the

execution of the statements in braces {} continues.

Syntax:

if(expression)

{

statements

....

....

}

Example:

x <-100

if(x > 10){

print(paste(x, "is greater than 10"))

}

Output:

[1] "100 is greater than 10"

Data Science A.Y. 2024-2025

Department of CSE Page 19

if-else condition

It is similar to if condition but when the test expression in if condition fails, then statements in else

condition are executed.

Syntax:

if(expression)

{

statements

....

....

}

else

{

statements

....

....

}

Example:

x <-5

Check value is less than or greater than 10if(x > 10){

print(paste(x, "is greater than 10"))

}else{

print(paste(x, "is less than 10"))

}

Output:

[1] "5 is less than 10"

for loop

It is a type of loop or sequence of statements executed repeatedly until exit condition is reached.

Syntax:

for(value in vector)

{

statements

....

....

}

Example:

x <-letters[4:10]

for(i inx){

print(i)

}

Output:

[1] "d"

[1] "e"

[1] "f"

[1] "g"

[1] "h"

Data Science A.Y. 2024-2025

Department of CSE Page 20

[1] "i"

[1] "j"

Nested loops
Nested loops are similar to simple loops. Nested means loops inside loop. Moreover, nested loops

are used to manipulate the matrix.

for(i in1:3)

{

for(j in1:5)

{

print(paste("This is iteration i =", i, "and j =", j))# Some output

}

}

[1] "This is iteration i = 1 and j = 1"

[1] "This is iteration i = 1 and j = 2"

[1] "This is iteration i = 1 and j = 3"

[1] "This is iteration i = 1 and j = 4"

[1] "This is iteration i = 1 and j = 5"

[1] "This is iteration i = 2 and j = 1"

[1] "This is iteration i = 2 and j = 2"

[1] "This is iteration i = 2 and j = 3"

[1] "This is iteration i = 2 and j = 4"

[1] "This is iteration i = 2 and j = 5"

[1] "This is iteration i = 3 and j = 1"

[1] "This is iteration i = 3 and j = 2"

[1] "This is iteration i = 3 and j = 3"

[1] "This is iteration i = 3 and j = 4"

[1] "This is iteration i = 3 and j = 5"

while loop
while loop is another kind of loop iterated until a condition is satisfied. The testing expression is

checked first before executing the body of loop.

Syntax:

while(expression)

{

statement

....

....

}

Example:

x =1

Print 1 to 5

while(x <=5){

print(x)

Data Science A.Y. 2024-2025

Department of CSE Page 21

x =x +1

}

Output:

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

repeat loop and break statement
repeat is a loop which can be iterated many number of times but there is no exit condition to come

out from the loop. So, break statement is used to exit from the loop. break statement can be used in

any type of loop to exit from the loop.

Syntax:

repeat {

statements

....

....
if(expression) {
break

}

}

Example:

x =1

Print 1 to 5

repeat{

print(x)

x =x +1

if(x > 5){

break

}

}

Output:

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

next statement
next statement is used to skip the current iteration without executing the further statements and

continues the next iteration cycle without terminating the loop.

Data Science A.Y. 2024-2025

Department of CSE Page 22

Example:

Defining vector

x <-1:10

Print even numbers

for(i inx){

if(i%%2!=0){

next#Jumps to next loop

}

print(i)

}

Output:

[1] 2

[1] 4

[1] 6

[1] 8

[1] 10

Functions

name <- function(arguments) expression

Where name can be any variable name, arguments is a list of formal arguments to the function, and

expression is what the function will do when you call it. It says expression because you might as

well think

about the body of a function as an expression, but typically it is a sequence of statements enclosed

by curly

brackets:

name <- function(arguments) { statements }

It is just that such a sequence of statements is also an expression; the result of executing a series of

statements is the value of the last statement.

The following function will print a statement and return 5 because the statements in the function

bodyare first a print statement and then just the value 5 that will be the return value of the function:f

<- function()

{

print("hello, world")

5

}

f()

[1] "hello, world"

[1] 5

plus <- function(x, y) {

print(paste(x, "+", y, "is", x + y))

x + y

}

Data Science A.Y. 2024-2025

Department of CSE Page 23

div <- function(x, y) {

print(paste(x, "/", y, "is", x / y))

x / y

}

plus(2, 2)

[1] "2 + 2 is 4"

[1] 4

div(6, 2)

[1] "6 / 2 is 3"

[1] 3

Named Arguments
In the above function calls, the argument matching of formal argument to the actual

arguments takes place in positional order.

This means that, in the call pow(8,2), the formal arguments x and y are assigned 8

and 2 respectively.

We can also call the function using named arguments.

When calling a function in this way, the order of the actual arguments doesn't matter.

For example, all of the function calls given below are equivalent.

> pow(8, 2)

[1] "8 raised to the power 2 is 64"

> pow(x = 8, y = 2)

[1] "8 raised to the power 2 is 64"

> pow(y = 2, x = 8)

[1] "8 raised to the power 2 is 64"

Furthermore, we can use named and unnamed arguments in a single call.

In such case, all the named arguments are matched first and then the remaining

unnamed arguments are matched in a positional order.

> pow(x=8, 2)

[1] "8 raised to the power 2 is 64"

> pow(2, x=8)

[1] "8 raised to the power 2 is 64"

In all the examples above, x gets the value 8 and y gets the value 2.

Default Values for Arguments

We can assign default values to arguments in a function in R.

This is done by providing an appropriate value to the formal argument in the function

declaration.

Here is the above function with a default value for y.

pow <- function(x, y = 2) {

function to print x raised to the power y

result <- x^y

print(paste(x,"raised to the power", y, "is", result))

}

The use of default value to an argument makes it optional when calling the function.

> pow(3)

[1] "3 raised to the power 2 is 9"

Data Science A.Y. 2024-2025

Department of CSE Page 24

> pow(3,1)

[1] "3 raised to the power 1 is 3"

Here, y is optional and will take the value 2 when not provided.

Return Value from R Function

Method 1: R function with return value

In this scenario, we will use the return statement to return some value

Syntax:

function_name <- function(parameters)

{

statements

return(value)

}

function_name(values)

Where,

 function_name is the name of the function

 parameters are the values that are passed as arguments

 return() is used to return a value

 function_name(values) is used to pass values to the parameters

addition= function(val1,val2)

{

add=val1+val2

return(add)

}

addition(10,20)

Output:

[1] 30

Data Science A.Y. 2024-2025

Department of CSE Page 25

Method 2: R function to return multiple values as a list

In this scenario, we will use the list() function in the return statement to return multiple values.

Syntax:

function_name <- function(parameters) {

statements

return(list(value1,value2,.,value n)

}

function_name(values)

where,

 function_name is the name of the function

 parameters are the values that are passed as arguments

 return() function takes list of values as input

 function_name(values) is used to pass values to the parameters

Example: R program to perform arithmetic operations and return those values

arithmetic = function(val1,val2)

{

add=val1+val2

sub=val1-val2

mul=val1*val2

div=val2/val1

return(list(add,sub,mul,div))

}

arithmetic(10,20)

Output:

[[1]]

[1] 30

[[2]]

[1] -10

[[3]]

[1] 200

[[4]]

[1]

Data Science A.Y. 2023-2024

Department of CSE Page 26

UNIT – II

Loading, Exploring and Managing Data
Working with data from files: Reading and Writing Data, Reading Data Files with read.table (),

Reading in Larger Datasets with read.table. Working with relational databases. Data manipulation

packages: dplyr, data.table, reshape2, tidyr, lubridate.

Reading and Writing Data

One of the important formats to store a file is in a text file. R provides various methods that one can

read data from a text file.

 read.delim(): This method is used for reading “tab-separated value” files (“.txt”). By default,

point (“.”) is used as decimal points.

syntax: read.delim(file, header = TRUE, sep = “\t”, dec = “.”, …)

myData = read.delim("1.txt", header = FALSE)

print(myData)

Output:

1 A computer science portal.

 read.delim2(): This method is used for reading “tab-separated value” files (“.txt”). By

default, point (“,”) is used as decimal points.

Syntax: read.delim2(file, header = TRUE, sep = “\t”, dec = “,”, …)

myData = read.delim2("1.txt",header=

FALSE)

print(myData)

 file.choose(): In R it’s also possible to choose a file interactively using the function file.choose.

myFile = read.delim(file.choose(), header = FALSE)

print(myFile)

Output:

1 A computer science portal.

 read_tsv(): This method is also used for to read a tab separated (“\t”) values by using the

help of readr package.

Syntax: read_tsv(file, col_names = TRUE)

library(readr)

myData = read_tsv("1.txt", col_names =
FALSE)print(myData)

Output:

A

tibble: 1

x 1

X1

1 A computer science portal .

Reading one line at a time

 read_lines(): This method is used for the reading line of your own choice whether it’s one or

two orten lines at a time. To use this method we have to import reader package.

Syntax: read_lines(file, skip = 0, n_max = -1L)

library(readr)

myData = read_lines("1.txt", n_max

= 1) print(myData)

myData = read_lines("1.txt", n_max = 2)

Data Science A.Y. 2023-2024

Department of CSE Page 27

print(myData)

Output:

[1] "c."

[1] "c++"

[2] "java"

Reading the whole file

 read_file(): This method is used for reading the whole file. To use this method we have to

importreader package.

Syntax:

read_lines(file)file:
the file path
library(readr)

myData = read_file("1.txt")

print(myData)

Output:

[1] “cc++java”

Reading a file in a table format

Another popular format to store a file is in a tabular format. R provides various methods that one

can read data from a tabular formatted data file.

 read.table(): read.table() is a general function that can be used to read a file in table

format. Thedata will be imported as a data frame.

Syntax: read.table(file, header = FALSE, sep = “”, dec = “.”)

myData =

read.table("basic.csv")
print(myData)

Output:

1 Name,Age,Qualification,Address

2 Amiya,18,MCA,BBS

3 Niru,23,Msc,BLS

4 Debi,23,BCA,SBP

5 Biku,56,ISC,JJP

 read.csv(): read.csv() is used for reading “comma separated value” files (“.csv”). In this also

thedata will be imported as a data frame.

Syntax: read.csv(file, header = TRUE, sep = “,”, dec =

“.”, …)myData = read.csv("basic.csv")

print(myData)

Output:

Name Age Qualification

Address

1 Amiya 18 MCA BBS

2 Niru 23 Msc BLS

3 Debi 23 BCA SBP

4 Biku 56 ISC JJP

 read.csv2(): read.csv() is used for variant used in countries that use a comma “,” as decimal

pointand a semicolon “;” as field separators.

Syntax: read.csv2(file, header = TRUE, sep = “;”, dec = “,”, …)

myData = read.csv2("basic.csv")

Data Science A.Y. 2023-2024

Department of CSE Page 28

print(myData)

Output:

Name.Age.Qualification.Address

1 Amiya,18,MCA,BBS

2 Niru,23,Msc,BLS

3 Debi,23,BCA,SBP

4 Biku,56,ISC,JJP

 file.choose(): You can also use file.choose() with read.csv() just like before.

myData =
read.csv(file.choose())

print(myData)

Output:

Name Age Qualification

Address

1 Amiya 18 MCA BBS

2 Niru 23 Msc BLS

3 Debi 23 BCA SBP
4 Biku 56 ISC JJP

 read_csv(): This method is also used for to read a comma (“,”) separated values by using

the helpof readr package.

Syntax: read_csv(file, col_names = TRUE)
library(readr)

myData = read_csv("basic.csv", col_names = TRUE)

print(myData)

Output:

Parsed with column specification:

cols(Name = col_character(),Age

= col_double(), Qualification =

col_character(),Address =

col_character())

A tibble: 4 x 4

Name Age Qualification Address

1 Amiya 18 MCA BBS

2 Niru 23 Msc BLS

3 Debi 23 BCA SBP

4 Biku 56 ISC JJP

Reading a file from the internet

It’s possible to use the functions read.delim(), read.csv() and read.table() to import files from the

web.

myData = read.delim("http://www.sthda.com/upload/boxplot_format.txt")

print(head(myData))

Output:

http://www.sthda.com/upload/boxplot_format.txt

Data Science A.Y. 2023-2024

Department of CSE Page 29

Nom variable Group
1 IND1 10 A

2 IND2 7 A

3 IND3 20 A

4 IND4 14 A
5 IND5 14 A
6 IND6 12 A

Reading a CSV File

Following is a simple example of read.csv() function to read a CSV file available in your current

working directory −

data <- read.csv("input.csv")
print(data)

When we execute the above code, it produces the following result −

id, name, salary, start_date, dept

1 1 Rick 623.30 2012-01-01 IT
2 2 Dan 515.20 2013-09-23 Operations

3 3 Michelle 611.00 2014-11-15 IT
4 4 Ryan 729.00 2014-05-11 HR

5 NA Gary 843.25 2015-03-27 Finance

6 6 Nina 578.00 2013-05-21 IT

7 7 Simon 632.80 2013-07-30 Operations

8 8 Guru 722.50 2014-06-17 Finance

Analyzing the CSV File

By default the read.csv() function gives the output as a data frame. This can be easily checked as

follows. Also we can check the number of columns and rows.

data <- read.csv("input.csv")

print(is.data.frame(data))

print(ncol(data))

print(nrow(data))

When we execute the above code, it produces the following result −

[1] TRUE

[1] 5

[1] 8

Once we read data in a data frame, we can apply all the functions applicable to data frames as

explained in subsequent section.

Get the maximum salary

Create a data frame.

data <- read.csv("input.csv")

Get the max salary from data frame.

sal <- max(data$salary)

print(sal)

When we execute the above code, it produces the following result −

[1] 843.25

Get the details of the person with max salary

We can fetch rows meeting specific filter criteria similar to a SQL where clause.

Create a data frame.

data <- read.csv("input.csv")
Get the max salary from data frame.

sal <- max(data$salary)

Data Science A.Y. 2023-2024

Department of CSE Page 30

Get the person detail having max salary.

retval <- subset(data, salary == max(salary))

print(retval)

When we execute the above code, it produces the following result −

id name salary start_date dept

5 NA Gary 843.25 2015-03-27 Finance
Get all the people working in IT department

Create a data frame.

data <- read.csv("input.csv")

retval <- subset(data, dept == "IT")

print(retval)

When we execute the above code, it produces the following result −

id name salary start_date dept

1 1 Rick 623.3 2012-01-01 IT
3 3 Michelle 611.0 2014-11-15 IT

6 6 Nina 578.0 2013-05-21 IT

Get the persons in IT department whose salary is greater than 600

data <- read.csv("input.csv")

info <- subset(data, salary > 600 & dept == "IT")

print(info)

When we execute the above code, it produces the following result −

id name salary start_date dept

1 1 Rick 623.3 2012-01-01 IT
3 3 Michelle 611.0 2014-11-15 IT

Get the people who joined on or after 2014

data <- read.csv("input.csv")
retval <- subset(data, as.Date(start_date) > as.Date("2014-01-01"))

print(retval)

When we execute the above code, it produces the following result −

id name salary start_date dept

3 3 Michelle 611.00 2014-11-15 IT
4 4 Ryan 729.00 2014-05-11 HR

5 NA Gary 843.25 2015-03-27 Finance
8 8 Guru 722.50 2014-06-17 Finance

Writing into a CSV File

R can create csv file form existing data frame. The write.csv() function is used to create the csv file.

This file gets created in the working directory.

data <- read.csv("input.csv")
retval <- subset(data, as.Date(start_date) > as.Date("2014-01-01"))

write.csv(retval,"output.csv")

newdata <- read.csv("output.csv")

print(newdata)

When we execute the above code, it produces the following result −

X id name salary start_date dept

1 3 3 Michelle 611.00 2014-11-15 IT

2 4 4 Ryan 729.00 2014-05-11 HR
3 5 NA Gary 843.25 2015-03-27 Finance
4 8 8 Guru 722.50 2014-06-17 Finance

Data Science A.Y. 2023-2024

Department of CSE Page 31

Install xlsx Package

You can use the following command in the R console to install the "xlsx" package. It may ask to
install some additional packages on which this package is dependent. Follow the same commandwith required

package name to install the additional packages.

install.packages("xlsx")

Verify and Load the "xlsx" Package

Use the following command to verify and load the "xlsx" package.

any(grepl("xlsx",installed.packages()))

library("xlsx")
When the script is run we get the following output.

[1] TRUE

Loading required package: rJava

Loading required package: methods

Loading required package: xlsxjars

Input as xlsx File

Open Microsoft excel. Copy and paste the following data in the work sheet named as sheet1.

id
1

name
Rick

salary
623.3

start_date dept
1/1/2012

IT

2 Dan 515.2 9/23/2013 Operations

3 Michelle 611 11/15/2014 IT

4 Ryan 729 5/11/2014 HR

5 Gary 43.25 3/27/2015 Finance

6 Nina 578 5/21/2013 IT

7 Simon 632.8 7/30/2013 Operations
8 Guru 722.5 6/17/2014 Finance

Also copy and paste the following data to another worksheet and rename this worksheet to "city".

name city

Rick Seattle
Dan Tampa

Michelle Chicago

Ryan Seattle

Gary Houston

Nina Boston

Simon Mumbai

Guru Dallas

Save the Excel file as "input.xlsx". You should save it in the current working directory of the R

workspace.

Reading the Excel File
The input.xlsx is read by using the read.xlsx() function as shown below. The result is stored as a

data frame in the R environment.

data <- read.xlsx("input.xlsx", sheetIndex = 1)

print(data)

When we execute the above code, it produces the following result −

 id, name, salary, start_date, dept

1 1 Rick 623.30 2012-01-01 IT
2 2 Dan 515.20 2013-09-23 Operations

3 3 Michelle 611.00 2014-11-15 IT

4 4 Ryan 729.00 2014-05-11 HR

5 NA Gary 843.25 2015-03-27 Finance

6 6 Nina 578.00 2013-05-21 IT
7 7 Simon 632.80 2013-07-30 Operations

Data Science A.Y. 2023-2024

Department of CSE Page 32

8 8 Guru 722.50 2014-06-17 Finance

XML is a file format which shares both the file format and the data on the World Wide Web,

intranets, and elsewhere using standard ASCII text. It stands for Extensible Markup Language

(XML). Similar to HTML it contains markup tags. But unlike HTML where the markup tag

describes structure of the page, in xml the markup tags describe the meaning of the data contained

into the file.

install.packages("XML")

Input Data

Create a XMl file by copying the below data into a text editor like notepad. Save the file with a .xml

extension and choosing the file type as all files(*.*).

<RECORDS>

<EMPLOYEE>

<ID>1</ID>
<NAME>Rick</NAME>

<SALARY>623.3</SALARY>

<STARTDATE>1/1/2012</STARTDATE>

<DEPT>IT</DEPT>

</EMPLOYEE>

<EMPLOYEE>

<ID>2</ID>

<NAME>Dan</NAME>

<SALARY>515.2</SALARY>

<STARTDATE>9/23/2013</STARTDATE>

<DEPT>Operations</DEPT>

</EMPLOYEE>

<EMPLOYEE>

<ID>3</ID>

<NAME>Michelle</NAME>

<SALARY>611</SALARY>

<STARTDATE>11/15/2014</STARTDATE>

<DEPT>IT</DEPT>

</EMPLOYEE>

<EMPLOYEE>

<ID>4</ID>

<NAME>Ryan</NAME>

<SALARY>729</SALARY>

<STARTDATE>5/11/2014</STARTDATE>

<DEPT>HR</DEPT>

</EMPLOYEE>

<EMPLOYEE>

<ID>5</ID>

<NAME>Gary</NAME>

<SALARY>843.25</SALARY>

<STARTDATE>3/27/2015</STARTDATE>

<DEPT>Finance</DEPT>

</EMPLOYEE>

<EMPLOYEE>

<ID>6</ID>

Data Science A.Y. 2023-2024

Department of CSE Page 33

<NAME>Nina</NAME>

<SALARY>578</SALARY>

<STARTDATE>5/21/2013</STARTDATE>

<DEPT>IT</DEPT>

</EMPLOYEE>

<EMPLOYEE>

<ID>7</ID>
<NAME>Simon</NAME>

<SALARY>632.8</SALARY>

<STARTDATE>7/30/2013</STARTDATE>
<DEPT>Operations</DEPT>

</EMPLOYEE>

<EMPLOYEE>

<ID>8</ID>

<NAME>Guru</NAME>

<SALARY>722.5</SALARY>

<STARTDATE>6/17/2014</STARTDATE>

<DEPT>Finance</DEPT>

</EMPLOYEE>

</RECORDS>

Reading XML File

The xml file is read by R using the function xmlParse(). It is stored as a list in R.

library("XML")

library("methods")
result <- xmlParse(file = "input.xml")

print(result)

When we execute the above code, it produces the following result –

1 Rick 623.3 1/1/2012 IT

2 Dan 515.2 9/23/2013 Operations

3 Michelle611 11/15/2014 IT

4Ryan 729 5/11/2014 HR

5Gary 843.253/27/2015Finance

6Nina 5785/21/2013 IT

7Simon 632.87/30/2013Operations

8Guru722.5 6/17/2014Finance

Get Number of Nodes Present in XML File

Load the packages required to read XML files.

library("XML")
library("methods")
Give the input file name to the function.

result <- xmlParse(file = "input.xml")

Exract the root node form the xml file

rootnode <- xmlRoot(result)

Find number of nodes in the root.
rootsize <- xmlSize(rootnode)

Print the result.
print(rootsize)

Data Science A.Y. 2023-2024

Department of CSE Page 34

When we execute the above code, it produces the following result −

Output

[1] 8

Details of the First Node

Let's look at the first record of the parsed file. It will give us an idea of the various elements present

in the top level node.

Load the packages required to read XML files.
library("XML")

library("methods")

Give the input file name to the function.

result <- xmlParse(file = "input.xml")

Exract the root node form the xml file.

rootnode <- xmlRoot(result)

Print the result.

print(rootnode[1])

When we execute the above code, it produces the following result −

$EMPLOYEE

1 Rick 623.3

1/1/2012 IT

attr(,"class")

[1] "XMLInternalNodeList" "XMLNodeList"

Get Different Elements of a Node

Load the packages required to read XML files.

library("XML")

library("methods")

Give the input file name to the function.

result <- xmlParse(file = "input.xml")

Exract the root node form the xml file.

rootnode <- xmlRoot(result)

Get the first element of the first node.

print(rootnode[[1]][[1]])

Get the fifth element of the first node.

print(rootnode[[1]][[5]])

Get the second element of the third node.

print(rootnode[[3]][[2]])

When we execute the above code, it produces the following result –

1 IT Michelle

JSON file stores data as text in human-readable format. Json stands for JavaScript Object Notation.

R can read JSON files using the rjson package.

Install rjson Package

In the R console, you can issue the following command to install the rjson package.

install.packages("rjson")

Input Data

Create a JSON file by copying the below data into a text editor like notepad. Save the file with

a .json extension and choosing the file type as all files(*.*).

{
"ID":["1","2","3","4","5","6","7","8"],

"Name":["Rick","Dan","Michelle","Ryan","Gary","Nina","Simon","Guru"],

Data Science A.Y. 2023-2024

Department of CSE Page 35

"Salary":["623.3","515.2","611","729","843.25","578","632.8","722.5"],

"StartDate":["1/1/2012","9/23/2013","11/15/2014","5/11/2014","3/27/2015","5/21/2013",

"7/30/2013","6/17/2014"],

"Dept":["IT","Operations","IT","HR","Finance","IT","Operations","Finance"]

}

Read the JSON File

The JSON file is read by R using the function from JSON(). It is stored as a list in R.

Load the package required to read JSON files.

library("rjson")
Give the input file name to the function.

result <- fromJSON(file = "input.json")
Print the result.

print(result)

When we execute the above code, it produces the following result −

$ID

[1] "1" "2" "3" "4" "5" "6" "7" "8"

$Name

[1] "Rick" "Dan" "Michelle" "Ryan" "Gary" "Nina" "Simon" "Guru"
$Salary

[1] "623.3" "515.2" "611" "729" "843.25" "578" "632.8" "722.5"

$StartDate

[1] "1/1/2012" "9/23/2013" "11/15/2014" "5/11/2014" "3/27/2015" "5/21/2013"

"7/30/2013" "6/17/2014"

$Dept

[1] "IT" "Operations" "IT" "HR" "Finance" "IT"

"Operations" "Finance"

Convert JSON to a Data Frame

We can convert the extracted data above to a R data frame for further analysis using the

as.data.frame() function.

Load the package required to read JSON files.

library("rjson")

Give the input file name to the function.
result <- fromJSON(file = "input.json")

Convert JSON file to a data frame.

json_data_frame <- as.data.frame(result)

print(json_data_frame)

When we execute the above code, it produces the following result −

id, name, salary, start_date, dept

1 1 Rick 623.30 2012-01-01 IT
2 2 Dan 515.20 2013-09-23 Operations

3 3 Michelle 611.00 2014-11-15 IT

4 4 Ryan 729.00 2014-05-11 HR

5 NA Gary 843.25 2015-03-27 Finance

6 6 Nina 578.00 2013-05-21 IT
7 7 Simon 632.80 2013-07-30 Operations

8 8 Guru 722.50 2014-06-17 Finance

Reading in Larger Datasets with read.table

R is known to have difficulties handling large data files. Here we will explore some tips that make

Data Science A.Y. 2023-2024

Department of CSE Page 36

working with such files in R less painfull.

 If you can comfortably work with the entire file in memory, but reading the file is rather

slow, consider using the data.table package and read the file with its fread function.

 If your file does not comfortably fit in memory:

 Use sqldf if you have to stick to csv files.

 Use a SQLite database and query it using either SQL queries or dplyr.

 Convert your csv file to a sqlite database in order to query

Loading a large dataset: use fread() or functions from readr instead of read.xxx().

library("data.table")

library("readr")

To read an entire csv in memory, by default, R users use the read.table method or variations thereof

(such as read.csv). However, fread from the data.table package is a lot faster. Furthermore, the readr

package also provides more optimized reading functions (read_csv, read_delim,…). Let’s measure

the time to read in the data using these three different methods.

read.table.timing <- system.time(read.table(csv.name, header = TRUE, sep = ","))

readr.timing <- system.time(read_delim(csv.name, ",", col_names = TRUE))

data.table.timing <- system.time(allData <- fread(csv.name, showProgress = FALSE))

data <- data.frame(method = c('read.table', 'readr', 'fread'),

timing = c(read.table.timing[3], readr.timing[3], data.table.timing[3]))

1 read.table 183.732

2 readr 3.625

3 fread 12.564

Data files that don’t fit in memory

If you are not able to read in the data file, because it does not fit in memory (or because R becomes

too slow when you load the entire dataset), you will need to limit the amount of data that will

actually be stored in memory. There are a couple of options which we will investigate:

1. limit the number of lines you are trying to read for some exploratory analysis. Once you are

happy with the analysis you want to run on the entire dataset, move to another machine.

2. limit the number of columns you are reading to reduce the memory required to store the data.

3. limit both the number of rows and the number of columns using sqldf.

4. stream the data.

1. Limit the number of lines you read (fread)

Limiting the number of lines you read is easy. Just use the nrows and/or skip option (available to

both read.table and fread). skip can be used to skip a number of rows, but you can also pass a string

to this parameter causing fread to only start reading lines from the first line matching that string.

Let’s say we only want to start reading lines after we find a line matching the pattern 2015-06-12

15:14:39. We can do that like this:

sprintf("Number of lines in full data set: %s", nrow(allData))

[1] "Number of lines in full data set: 3761058"

subSet <- fread(csv.name, skip = "2015-06-12 15:14:39", showProgress = FALSE)

sprintf("Number of lines in data set with skipped lines: %s", nrow(subSet))

[1] "Number of lines in data set with skipped lines: 9998"

Skipping rows this way is obviously not giving you the entire dataset, so this strategy is only useful

for doing exploratory analysis on a subset of your data. Note that also read_delim provides a n_max

argument to limit the number of lines to read. If you want to explore the whole dataset, limiting the

https://inbo.github.io/tutorials/tutorials/r_large_data_files_handling/#loadentire
https://inbo.github.io/tutorials/tutorials/r_large_data_files_handling/#loadentire
https://inbo.github.io/tutorials/tutorials/r_large_data_files_handling/#loadentire
https://inbo.github.io/tutorials/tutorials/r_large_data_files_handling/#sqldftit
https://inbo.github.io/tutorials/tutorials/r_large_data_files_handling/#sqldftit
https://inbo.github.io/tutorials/tutorials/r_large_data_files_handling/#sqlitestrat
https://inbo.github.io/tutorials/tutorials/r_large_data_files_handling/#dplyrstrat
https://inbo.github.io/tutorials/tutorials/r_large_data_files_handling/#convertsqlite

Data Science A.Y. 2023-2024

Department of CSE Page 37

number of columns you read can be a more useful strategy.

2. Limit the number of columns you read (fread)

If you only need 4 columns of the 21 columns present in the file, you can tell fread to only select

those 4. This can have a major impact on the memory footprint of your data. The option you need

for this is: select. With this, you can specify a number of columns to keep. The opposite - specifying

the columns you want to drop - can be accomplished with the drop option.

fourColumns = fread(csv.name, select = c("device_info_serial", "date_time", "latitude",

"longitude"),

showProgress = FALSE)

sprintf("Size of total data in memory: %s MB", utils::object.size(allData)/1000000)

[1] "Size of total data in memory: 1173.480728 MB"

sprintf("Size of only four columns in memory: %s MB", utils::object.size(fourColumns)/1000000)

[1] "Size of only four columns in memory: 105.311936 MB"

3. Limiting both the number of rows and the number of columns using sqldf

The sqldf package allows you to run SQL-like queries on a file, resulting in only a selection of the

file being read. It allows you to limit both the number of lines and the number of rows at the same

time. In the background, this actually creates a sqlite database on the fly to execute the query.

4. Streaming data

Streaming a file means reading it line by line and only keeping the lines you need or do stuff with

the lines while you read through the file. It turns out that R is really not very efficient in streaming

files. The main reason is the memory allocation process that has difficulties with a constantly

growing object (which can be a dataframe containing only the selected lines).

Working with relational databases

In many production environments, the data you want lives in a relational or SQL database, not in

files. Public data is often in files (as they are easier to share), but your most important client data is

often in databases. Relational databases scale easily to the millions of records and supply important

production features such as parallelism, consistency, transactions, logging, and audits. When you’re

working with transaction data, you’re likely to find it already stored in a relational database, as

relational data- bases excel at online transaction processing (OLTP). Often you can export the

data into a structured file and use the methods of our previous sections to then transfer the data into

R. But this is generally not the right way to do things. Exporting from databases to files is often

unreliable and idiosyn- cratic due to variations in database tools and the typically poor job these

tools do when quoting and escaping characters that are confused with field separators. Data in a

database is often stored in what is called a normalized form, which requires relational

preparations called joins before the data is ready for analysis. Also, you often don’t want a dump of

the entire database, but instead wish to freely specify which columns and aggregations you need

during analysis.

Loading data with SQL Screwdriver

java -classpath SQLScrewdriver.jar:h2-1.3.170.jar \ com.winvector.db.LoadFiles \ file:dbDef.xml \

, \ hus \ file:csv_hus/ss11husa.csv file:csv_hus/ss11husb.csv java -classpath SQLScrewdriver.jar:h2-

1.3.170.jar \ com.winvector.db.LoadFiles \ file:dbDef.xml , pus \ file:csv_pus/ss11pusa.csv

file:csv_pus/ss11pusb.csv

Loading data from a database into R

To load data from a database, we use a database connector. Then we can directly issue SQL queries

from R. SQL is the most common database query language and allows us to specify arbitrary joins

and aggregations. SQL is called a declarative language (as opposed to a procedural language)

because in SQL we specify what relations we would like our data sample to have, not how to

https://cran.r-project.org/web/packages/sqldf/sqldf.pdf

Data Science A.Y. 2023-2024

Department of CSE Page 38

compute them. For our example, we load a

sample of the household data from the hus table and the rows from the person table (pus) that are

associated with those households.

options(java.parameters = "-Xmx2g")

drv <- JDBC("org.h2.Driver","h2-1.3.170.jar",identifier.quote="'")

options<-";LOG=0;CACHE_SIZE=65536;LOCK_MODE=0;UNDO_LOG=0"

conn <- dbConnect(drv,paste("jdbc:h2:H2DB",options,sep=''),"u","u")

dhus <- dbGetQuery(conn,"SELECT * FROM hus WHERE ORIGRANDGROUP<=1")

dpus <- dbGetQuery(conn,"SELECT pus.* FROM pus WHERE pus.SERIALNO IN \

(SELECT DISTINCT hus.SERIALNO FROM hus \

WHERE hus.ORIGRANDGROUP<=1)")

dbDisconnect(conn)

save(dhus,dpus,file='phsample.RData')

And we’re in business; the data has been unpacked from the Census-supplied .csv files into our

database and a useful sample has been loaded into R for analysis. We have actually accomplished a

lot. Generating, as we have, a uniform sample of households and matching people would be tedious

using shell tools. It’s exactly what SQL data- bases are designed to do well.

Data manipulation packages

Data Manipulation is a loosely used term with ‘Data Exploration’. It involves ‘manipulating’ data

using available set of variables. This is done to enhance accuracy and precision associated with data.

1. dplyr Package

This packages is created and maintained by Hadley Wickham. This package has everything (almost)

to accelerate your data manipulation efforts. It is known best for data exploration and

transformation. It’s chaining syntax makes it highly adaptive to use. It includes 5 major data

manipulation commands:

1. filter – It filters the data based on a condition

2. select – It is used to select columns of interest from a data set

3. arrange – It is used to arrange data set values on ascending or descending order

4. mutate – It is used to create new variables from existing variables

5. summarise (with group_by) – It is used to perform analysis by commonly used operations

such as min, max, mean count etc

Simple focus on these commands and do great in data exploration. Let’s understand these

commands one by one. I have used 2 pre-installed R data sets namely mtcars and iris.

> library(dplyr)

> data("mtcars")

> data('iris')

https://en.wikipedia.org/wiki/Hadley_Wickham#_blank

Data Science A.Y. 2023-2024

Department of CSE Page 39

> mydata <- mtcars

#read data

> head(mydata)

#creating a local dataframe. Local data frame are easier to read

> mynewdata <- tbl_df(mydata)

> myirisdata <- tbl_df(iris)

#now data will be in tabular structure

> mynewdata

> myirisdata

#use filter to filter data with required condition

> filter(mynewdata, cyl > 4 & gear > 4)

Data Science A.Y. 2023-2024

Department of CSE Page 40

> filter(mynewdata, cyl > 4)

> filter(myirisdata, Species %in% c('setosa', 'virginica'))

#use select to pick columns by name
> select(mynewdata, cyl,mpg,hp)

Data Science A.Y. 2023-2024

Department of CSE Page 41

#here you can use (-) to hide columns

> select(mynewdata, -cyl, -mpg)

#hide a range of columns

> select(mynewdata, -c(cyl,mpg))

#select series of columns

> select(mynewdata, cyl:gear)

#chaining or pipelining - a way to perform multiple operations

#in one line

> mynewdata %>%

select(cyl, wt, gear)%>%

filter(wt > 2)

Data Science A.Y. 2023-2024

Department of CSE Page 42

#arrange can be used to reorder rows

> mynewdata%>%

select(cyl, wt, gear)%>%

arrange(wt)

> mynewdata %>%

select(mpg, cyl)%>%

mutate(newvariable = mpg*cyl)

#or
> newvariable <- mynewdata %>% mutate(newvariable = mpg*cyl)

#summarise - this is used to find insights from data

> myirisdata%>%

group_by(Species)%>%

summarise(Average = mean(Sepal.Length, na.rm = TRUE))

Data Science A.Y. 2023-2024

Department of CSE Page 43

#or use summarise each

> myirisdata%>%

group_by(Species)%>%

summarise_each(funs(mean, n()), Sepal.Length, Sepal.Width)

#You can create complex chain commands using these 5 verbs.

#you can rename the variables using rename command

> mynewdata %>% rename(miles = mpg)

2. data.table Package

This package allows you to perform faster manipulation in a data set. Leave your traditional ways

of sub setting rows and columns and use this package. With minimum coding, you can do much

more. Using data.table helps in reducing computing time as compared to data.frame. You’ll be

astonished by the simplicity of this package.

A data table has 3 parts namely DT[i,j,by]. You can understand this as, we can tell R to subset the

rows using ‘i’, to calculate ‘j’ which is grouped by ‘by’. Most of the times, ‘by’ relates to

categorical variable. In the code below, I’ve used 2 data sets (airquality and iris).

#load data

> data("airquality")

> mydata <- airquality

> head(airquality,6)

> data(iris)

> myiris <- iris

Data Science A.Y. 2023-2024

Department of CSE Page 44

#load package

> library(data.table)

> mydata <- data.table(mydata)

> mydata

> mydata[2:4,]

#select columns with particular values

> myiris[Species == 'setosa']

#select columns with multiple values. This will give you columns with Setosa

#and virginica species

> myiris[Species %in% c('setosa', 'virginica')]

#select columns. Returns a vector

> mydata[,Temp]

> mydata[,.(Temp,Month)]

Data Science A.Y. 2023-2024

Department of CSE Page 45

#returns sum of selected column

> mydata[,sum(Ozone, na.rm = TRUE)]

[1]4887

#returns sum and standard deviation

> mydata[,.(sum(Ozone, na.rm = TRUE), sd(Ozone, na.rm = TRUE))]

#print and plot

> myiris[,{print(Sepal.Length)

> plot(Sepal.Width)

NULL}]

#grouping by a variable

> myiris[,.(sepalsum = sum(Sepal.Length)), by=Species]

#select a column for computation, hence need to set the key on column

> setkey(myiris, Species)

#selects all the rows associated with this data point

> myiris['setosa']

> myiris[c('setosa', 'virginica')]

3. reshape2 Package

As the name suggests, this package is useful in reshaping data. We all know the data come in many

forms. Hence, we are required to tame it according to our need. Usually, the process of reshaping

data in R is tedious and worrisome. R base functions consist of ‘Aggregation’ option using which

data can be reduced and rearranged into smaller forms, but with reduction in amount of information.

Aggregation includes tapply, by and aggregate base functions. The reshape package overcome these

Data Science A.Y. 2023-2024

Department of CSE Page 46

problems. Here we try to combine features which have unique values. It has 2 functions namely

melt and cast.

melt : This function converts data from wide format to long format. It’s a form of restructuring

where multiple categorical columns are ‘melted’ into unique rows. Let’s understand it using the

code below.

#create a data

> ID <- c(1,2,3,4,5)

> Names <- c('Joseph','Matrin','Joseph','James','Matrin')

> DateofBirth <- c(1993,1992,1993,1994,1992)

> Subject<- c('Maths','Biology','Science','Psycology','Physics')

> thisdata <- data.frame(ID, Names, DateofBirth, Subject)

> data.table(thisdata)

#load package
> install.packages('reshape2')
> library(reshape2)

#melt

> mt <- melt(thisdata, id=(c('ID','Names')))

> mt

cast : This function converts data from long format to wide format. It starts with melted data and

reshapes into long format. It’s just the reverse of melt function. It has two functions namely, dcast

and acast. dcast returns a data frame as output. acast returns a vector/matrix/array as the output.

Let’s understand it using the code below.

#cast

> mcast <- dcast(mt, DateofBirth + Subject ~ variable)

> mcast

Note: While doing research work, I found this image which aptly describes reshape package.

Data Science A.Y. 2023-2024

Department of CSE Page 47

4. tidyr Package

This package can make your data look ‘tidy’. It has 4 major functions to accomplish this task.

Needless to say, if you find yourself stuck in data exploration phase, you can use them anytime

(along with dplyr). This duo makes a formidable team. They are easy to learn, code and implement.

These 4 functions are:

 gather() – it ‘gathers’ multiple columns. Then, it converts them into key:value pairs. This

function will transform wide from of data to long form. You can use it as in alternative to

‘melt’ in reshape package.

 spread() – It does reverse of gather. It takes a key:value pair and converts it into separate

columns.

 separate() – It splits a column into multiple columns.

 unite() – It does reverse of separate. It unites multiple columns into single

columnLet’s understand it closely using the code below:

#load package

> library(tidyr)

#create a dummy data set

> names <- c('A','B','C','D','E','A','B')

> weight <- c(55,49,76,71,65,44,34)

> age <- c(21,20,25,29,33,32,38)

> Class <- c('Maths','Science','Social','Physics','Biology','Economics','Accounts')

#create data frame

> tdata <- data.frame(names, age, weight, Class)

> tdata

Data Science A.Y. 2023-2024

Department of CSE Page 48

#using gather function

> long_t <- tdata %>% gather(Key, Value, weight:Class)

> long_t

Separate function comes best in use when we are provided a date time variable in the data set. Since,

the column contains multiple information, hence it makes sense to split it and use those values

individually. Using the code below, I have separated a column into date, month and year.

#create a data set

> Humidity <- c(37.79, 42.34, 52.16, 44.57, 43.83, 44.59)

> Rain <- c(0.971360441, 1.10969716, 1.064475853, 0.953183435, 0.98878849, 0.939676146)
> Time <- c("27/01/2015 15:44","23/02/2015 23:24", "31/03/2015 19:15", "20/01/2015 20:52",

"23/02/2015 07:46", "31/01/2015 01:55")

#build a data frame

> d_set <- data.frame(Humidity, Rain, Time)

#using separate function we can separate date, month, year

> separate_d <- d_set %>% separate(Time, c('Date', 'Month','Year'))

> separate_d

#using unite function - reverse of separate

> unite_d <- separate_d%>% unite(Time, c(Date, Month, Year), sep = "/")

> unite_d

Data Science A.Y. 2023-2024

Department of CSE Page 49

#using spread function - reverse of gather

> wide_t <- long_t %>% spread(Key, Value)

> wide_t

5. Lubridate Package

Lubridate package reduces the pain of working of data time variable in R. This includes update

function, duration function and date extraction.

> install.packages('lubridate')

> library(lubridate)

#current date and time

> now()

[1] "2015-12-11 13:23:48 IST"

#assigning current date and time to variable n_time

> n_time <- now()

#using update function

> n_update <- update(n_time, year = 2013, month = 10)

> n_update

[1] "2013-10-11 13:24:28 IST"

#add days, months, year, seconds

> d_time <- now()

> d_time + ddays(1)

[1] "2015-12-12 13:24:54 IST"

> d_time + dweeks(2)

[1] "2015-12-12 13:24:54 IST"

> d_time + dyears(3)

[1] "2018-12-10 13:24:54 IST"

> d_time + dhours(2)

[1] "2015-12-11 15:24:54 IST"

> d_time + dminutes(50)

[1] "2015-12-11 14:14:54 IST"

> d_time + dseconds(60)

[1] "2015-12-11 13:25:54 IST"

#extract date,time

> n_time$hour <- hour(now())

> n_time$minute <- minute(now())

Data Science A.Y. 2023-2024

Department of CSE Page 50

> n_time$second <- second(now())

> n_time$month <- month(now())

> n_time$year <- year(now())

#check the extracted dates in separate columns

> new_data <- data.frame(n_time$hour, n_time$minute, n_time$second, n_time$month,

n_time$year)

> new_data

Data Science A.Y. 2023-2024

Department of CSE Page 51

UNIT-III

Modelling Methods-I: Choosing and evaluating Models

Mapping problems to machine learning tasks: Classification problems, Scoring problems,

Grouping: working without known targets, Problem-to-method mapping, Evaluating models: Over

fitting, Measures of model performance, Evaluating classification models, Evaluating scoring

models, Evaluating probability model.

There are a number of business problems that your team might be called on to address:

• Predicting what customers might buy, based on past transactions

• Identifying fraudulent transactions

• Determining price elasticity (the rate at which a price increase will decrease

• sales, and vice versa) of various products or product classes

• Determining the best way to present product listings when a customer searches

for an item Customer segmentation: grouping customers with similar purchasing behavior

• AdWord valuation: how much the company should spend to buy certain AdWords on search

engines

• Evaluating marketing campaigns

• Organizing new products into a product catalog

Your intended uses of the model have a big influence on what methods you should use. If you want

to know how small variations in input variables affect outcome, then you likely want to use a

regression method. If you want to know what single variable drives most of a categorization, then

decision trees might be a good choice. Also, each business problem suggests a statistical approach

to try. If you’re trying to predict scores, some sort of regression is likely a good choice; if you’re

trying to predict categories, then something like random forests is probably a good choice.

Solving classification problems

Suppose your task is to automate the assignment of new products to your company’s product

categories, This can be more complicated than it sounds. Products that come from different sources

may have their own product classification that doesn’t coincide with the one that you use on your

retail site, or they may come without any classification at all. Many large online retailers use teams

of human taggers to hand-categorize their products. This is not only labor-intensive, but inconsistent

and error-prone. Automation is an attractive option; it’s labor-saving, and can improve the quality of

the retail site. Product categorization based on product attributes and/or text descriptions of the

product is an example of classification: deciding how to assign (known) labels to an object.

Classification itself is an example of what is called supervised learning: in order to learn how to

classify objects, you need a dataset of objects that have already been classified (called the training

set). Building training data is the major expense for most classification tasks, especially text-related

ones.

Naive Bayes:

Naive Bayes classifiers are especially useful for problems with many input variables, categorical

Data Science A.Y. 2023-2024

Department of CSE Page 52

input variables with a very large number of possible values, and text classification. Naive Bayes

would be a good first attempt at solving the product categorization problem.

Decision trees:

Decision trees are useful when input variables interact with the output in “if-then” kinds of ways

(such as IF age > 65, THEN has.health.insurance=T). They are also suitable when inputs have an

AND relationship to each other (such as IF age < 25 AND student=T, THEN...) or when input

variables are redundant or correlated. The decision rules that come from a decision tree are in

principle easier for nontechnical users to understand than the decision processes that come from

other classifiers.

Logistic regression:

Logistic regression is appropriate when you want to estimate class probabilities (the probability that

an object is in a given class) in addition to class assignments. a An example use of a logistic

regression–based classifier is estimating the probability of fraud in credit card purchases. Logistic

regression is also a good choice when you want an idea of the relative impact of different input

variables on the output. For example, you might find out that a $100 increase in transaction size

increases the odds that the transaction is fraud by 2%, all else being equal.

Support vector machines:

Support vector machines (SVMs) are useful when there are very many input variables or when

input variables interact with the outcome or with each other in complicated (nonlinear) ways. SVMs

make fewer assumptions about variable distribution than do many other methods, which makes

them especially useful when the training data isn’t completely representative of the way the data is

distributed in production.

Solving scoring problems

For a scoring example, suppose that your task is to help evaluate how different marketing

campaigns can increase valuable traffic to the website. The goal is not only to bring more people to

the site, but to bring more people who buy. You’re looking at a number of different factors: the

communication channel (ads on websites, YouTube videos, print media, email, and so on); the

traffic source (Facebook, Google, radio stations, and so on); the demographic targeted; the time of

year; and so on.Predicting the increase in sales from a particular marketing campaign is an example

of regression, or scoring. Fraud detection can be considered scoring, too, if you’re trying to estimate

the probability that a given transaction is a fraudulent one (rather than just returning a yes/no

answer).

Scoring is also an instance of supervised learning.

Linear regression

Linear regression builds a model such that the predicted numerical output is a linear additive

function of the inputs. This can be a very effective approximation, even when the underlying

situation is in fact nonlinear. The resulting model also gives an indication of the relative impact of

each input variable on the output. Linear regression is often a good first model to try when trying to

predict a numeric value.

Logistic regression

Logistic regression always predicts a value between 0 and 1, making it suitable for predicting

Data Science A.Y. 2023-2024

Department of CSE Page 53

probabilities (when the observed outcome is a categorical value) and rates (when the observed

outcome is a rate or ratio). As we mentioned, logistic regression is an appropriate approach to the

fraud detection problem, if what you want to estimate is the probability that a given transaction is

fraudulent or legitimate.

Working without known targets

The preceding methods require that you have a training dataset of situations with known outcomes.

In some situations, there’s not (yet) a specific outcome that you want to predict. Instead, you may be

looking for patterns and relationships in the data that will help you understand your customers or

your business better.These situations correspond to a class of approaches called unsupervised

learning: rather than predicting outputs based on inputs, the objective of unsupervised learning is to

discover similarities and relationships in the data.

Some common clustering methods include these:

• K-means clustering

• Apriori algorithm for finding association rules

• Nearest neighbor

But these methods make more sense when we provide some context and explain their use, as we do

next.

Evaluating models

For most model evaluations, we just want to compute one or two summary scores that tell us if the

Data Science A.Y. 2023-2024

Department of CSE Page 54

model is effective. To decide if a given score is high or low, we have to appeal to a few ideal

models: a null model (which tells us what low performance looks like), a Bayes rate model (which

tells us what high performance looks like), and the best single-variable model (which tells us what

a simple model can achieve).

Overfitting

An overfit model looks great on the training data and then performs poorly on new data. A model’s

prediction error on the data that it trained from is called training error. A model’s prediction error

on new data is called generalization error. Usually, training error will be smaller than

generalization error (no big surprise). Ideally, though, the two error rates should be close. If

generalization error is large, and your model’s test performance is poor, then your model has

probably overfit—it’s memorized the training data instead of discovering generalizable rules or

patterns. You want to avoid overfitting by preferring (as long as possible) simpler models which do

in fact tend to generalize better

Data Science A.Y. 2023-2024

Department of CSE Page 55

If you do not split your data, but instead use all available data to both train and evaluate each model,

then you might think that you will pick the better model, because the model evaluation has seen

more data. However, the data used to build a model is not the best data for evaluating the model’s

performance. This is because there’s an optimistic measurement bias in this data, because this data

was seen during model construction. Model construction is optimizing your performance measure

(or at least something related to your performance measure), so you tend to get exaggerated

estimates of performance on your training data.

In addition, data scientists naturally tend to tune their models to get the best possible performance

out of them. This also leads to exaggerated measures of performance. This is often called multiple

comparison bias. And since this tuning might sometimes take advantage of quirks in the training

data, it can potentially lead to overfit.

A recommended precaution for this optimistic bias is to split your available data into test and

training. Perform all of your clever work on the training data alone, and delay measuring your

performance with respect to your test data until as late as possible in your project (as all choices you

make after seeing your test or holdout performance introduce a modeling bias). The desire to keep

the test data secret for as long as possible is why we often actually split data into training,

calibration, and test sets

When partitioning your data, you want to balance the trade-off between keeping enough data to fit a

good model, and holding out enough data to make good estimates of the model’s performance.

Data Science A.Y. 2023-2024

Department of CSE Page 56

Some common splits are 70% training to 30% test, or 80% training to 20% test. For large datasets,

you may even sometimes see a 50–50 split.

K-fold cross-validation

Testing on holdout data, while useful, uses each example only once: either as part of the model

construction or as part of the held-out model evaluation set. This is not statistically efficient,

because the test set is often much smaller than our whole dataset. This means we are losing some

precision in our estimate of model performance by partitioning our data so simply. In our example

scenario, suppose you were not able to collect a very large dataset of historical used car prices. Then

you might feel that you do not have enough data to split into training and test sets that are large

enough to both build good models and evaluate them properly. In this situation, you might choose

to use a more thorough partitioning scheme called k-fold cross-validation.

An estimator is called statistically efficient when it has minimal variance for a given dataset

size.The idea behind k-fold cross-validation is to repeat the construction of a model on different

subsets of the available training data and then evaluate that model only on data not seen during

construction. This allows us to use each and every example in both training and evaluating models

(just never the same example in both roles at the same time). The idea is shown in figure for k = 3.

Figure : Partitioning data for 3-fold cross-validation

In the figure, the data is split into three non-overlapping partitions, and the three partitions are

arranged to form three test-train splits. For each split, a model is trained on the training set and then

applied to the corresponding test set. The entire set of predictions is then evaluated, using the

https://livebook.manning.com/book/practical-data-science-with-r-second-edition/chapter-6/ch06fig09

Data Science A.Y. 2023-2024

Department of CSE Page 57

appropriate evaluation scores that we will discuss later in the chapter. This simulates training a

model and then evaluating it on a holdout set that is the same size as the entire dataset. Estimating

the model’s performance on all the data gives us a more precise estimate of how a model of a given

type would perform on new data. Assuming that this performance estimate is satisfactory, then you

would go back and train a final model, using all the training data.

Measures of model performance

For most model evaluations, we just want to compute one or two summary scores that tell us if the

model is effective. To decide if a given score is high or low, we generally compare our model’s

performance to a few baseline models.

The null model

The null model is the best version of a very simple model you’re trying to outperform. The most

typical null model is a model that returns the same answer for all situations (a constant model). We

use null models as a lower bound on desired performance. For example, in a categorical problem,

the null model would always return the most popular category, as this is the easy guess that is least

often wrong. For a score model, the null model is often the average of all the outcomes, as this has

the least square deviation from all the outcomes.

The idea is that if you’re not outperforming the null model, you’re not delivering value. Note that it

can be hard to do as good as the best null model, because even though the null model is simple, it’s

privileged to know the overall distribution of the items it will be quizzed on. We always assume the

null model we’re comparing to is the best of all possible null models

Single-variable models

We also suggest comparing any complicated model against the best single-variable model you have

available A complicated model can’t be justified if it doesn’t outperform the best single-variable

model available from your training data. Also, business analysts have many tools for building

effective single-variable models (such as pivot tables), so if your client is an analyst, they’re likely

looking for performance above this level.

Evaluating classification models

A classification model places examples into two or more categories. The most common measure of

classifier quality is accuracy. For measuring classifier performance,we’ll first introduce the

incredibly useful tool called the confusion matrix and show how it can be used to calculate many

important evaluation scores. The first score we’ll discuss is accuracy, and then we’ll move on to

better and more detailed measures such as precision and recall.

Let’s use the example of classifying email into spam (email we in no way want) and non-spam

(email we want). A ready-to-go example (with a good description) is the Spambase dataset

(http://mng.bz/e8Rh). Each row of this dataset is a set of featuresmeasured for a specific email and

an additional column telling whether the mail was spam (unwanted) or non-spam (wanted). We’ll

quickly build a spam classification

model so we have results to evaluate. To do this, download the file Spambase/spamD.tsv from the

book’s GitHub site (https://github.com/WinVector/zmPDSwR/

tree/master/Spambase) and then perform the steps shown in the following listing.

Building and applying a logistic regression spam model

spamD <- read.table('spamD.tsv',header=T,sep='\t')

spamTrain <- subset(spamD,spamD$rgroup>=10)

spamTest <- subset(spamD,spamD$rgroup<10)

http://mng.bz/e8Rh)
https://github.com/WinVector/zmPDSwR/

Data Science A.Y. 2023-2024

Department of CSE Page 58

spamVars <- setdiff(colnames(spamD),list('rgroup','spam'))

spamFormula <- as.formula(paste('spam=="spam"',

paste(spamVars,collapse=' + '),sep=' ~ '))
spamModel <- glm(spamFormula,family=binomial(link='logit'),

data=spamTrain)

spamTrain$pred <- predict(spamModel,newdata=spamTrain,
type='response')

spamTest$pred <- predict(spamModel,newdata=spamTest,

type='response')

print(with(spamTest,table(y=spam,glmPred=pred>0.5)))

glmPred

y

FALSE TRUE

non-spam
264

14

spam

22 158

A sample of the results of our simple spam classifier is shown in the next listing.

Spam classifications

> sample <- spamTest[c(7,35,224,327),c('spam','pred')]
> print(sample)

spam

pred

115

spam 0.9903246227

361
spam 0.4800498077

2300 non-spam 0.0006846551

3428 non-spam 0.0001434345

CONFUSION MATRIX

The absolute most interesting summary of classifier performance is the confusion matrix. This

matrix is just a table that summarizes the classifier’s predictions against the actual known data

categories.The confusion matrix is a table counting how often each combination of known

outcomes (the truth) occurred in combination with each prediction type. For our email spam

example, the confusion matrix is given by the following R command.

cM <- table(truth=spamTest$spam,prediction=spamTest$pred>0.5)

> print(cM)
prediction

truth FALSE TRUE

non-spam 264 14

CHANGING A SCORE TO A CLASSIFICATION

Note that we converted the numerical prediction score into a decision by checking if the score was

above or below 0.5. For some scoring models (like logistic regression) the 0.5 score is likely a high

accuracy value. However, accuracy isn’t always the end goal, and for unbalanced training data the

Data Science A.Y. 2023-2024

Department of CSE Page 59

0.5 threshold won’t be good. Picking thresholds other than 0.5 can allow the data scientist to trade

precision for recall we can start at 0.5, but considertrying other thresholds and looking at the ROC

curve.Most of the performance measures of a classifier can be read off the entries of this confusion

matrix. We start with the most common measure: accuracy.

A CCURACY

Accuracy is by far the most widely known measure of classifier performance. For a classifier,

accuracy is defined as the number of items categorized correctly divided by the total number of

items. It’s simply what fraction of the time the classifier is correct. At the very least, you want a

classifier to be accurate. In terms of our confusion matrix, accuracy is

(TP+TN)/(TP+FP+TN+FN)=(cM[1,1]+cM[2,2])/sum(cM) or 92% accurate.The error of around 8%

is unacceptably high for a spam filter, but good for illustrating different sorts of model evaluation

criteria.

ACCURACY IS AN INAPPROPRIATE MEASURE FOR UNBALANCED CLASSES

Suppose we have a situation where we have a rare event (say, severe complications during

childbirth). If the event we’re trying to predict is rare (say, around 1% of the population), the null

model—the rare event never happens— is very accurate. The null model is in fact more accurate

than a useful (but not perfect model) that identifies 5% of the population as being “at risk” and

captures all of the bad events in the 5%. This is not any sort of paradox. It’s just that accuracy is not

a good measure for events that have unbalanced distribution or unbalanced costs (different costs of

“type 1” and “type 2” errors).

PRECISION AND RECALL

Another evaluation measure used by machine learning researchers is a pair of numbers called

precision and recall. These terms come from the field of information retrieval and are defined as

follows. Precision is what fraction of the items the classifier flags as being in the class actually are

in the class. So precision is TP/(TP+FP) , which is cM[2,2]/(cM[2,2]+cM[1,2]) , or about 0.92 (it is

only a coincidence that this is so close to the accuracy number we reported earlier). Again, precision

is how often a positive indication turns out to be correct. It’s important to remember that precision is

a function of the combination of the classifier and the dataset. It doesn’t make sense to ask how

precise a classifier is in isolation; it’s only sensible to ask how precise a clas- sifier is for a given

dataset. In our email spam example, 93% precision means 7% of what was flagged as spam was in

fact not spam. This is an unacceptable rate for losing possibly important messages. Akismet, on the

other hand, had a precision of t[2,2]/(t[2,2]+t[1,2]) , or over 99.99%, so in addition to having high

accuracy, Akismet has even higher precision (very important in a spam filtering application).The

companion score to precision is recall. Recall is what fraction of the things that are in the class are

detected by the classifier, or TP/(TP+FN)=cM[2,2]/(cM[2,2]+cM[2,1]) .For our email spam

example this is 88%, and for the Akismet example it is 99.87%. In both cases most spam is in fact

tagged (we have high recall) and precision is emphasized over recallIt’s important to remember this:

precision is a measure of confirmation (when the classifier indicates positive, how often it is in fact

correct), and recall is a measure of utility (how much the classifier finds of what there actually is to

find). Precision and recall tend to be relevant to business needs and are good measures to discuss

with your project sponsor and client.

F1

The F1 score is a useful combination of precision and recall. If either precision or recall is very

small, then F1 is also very small. F1 is defined as 2*precision*recall/(precision+recall) . So our

email spam example with 0.93 precision and 0.88 recall has an F1 score of 0.90. The idea is that a

classifier that improves precision or recall by sacrificing a lot of the complementary measure will

Data Science A.Y. 2023-2024

Department of CSE Page 60

have a lower F1.

SENSITIVITY AND SPECIFICITY

Scientistsand doctors tend to use a pair of measures called sensitivity and specificity. Sensitivity is

also called the true positive rate and is exactly equal to recall. Specificity is also called the true

negative rate and is equal to TN/(TN+FP)=cM[1,1]/(cM[1,1]+cM[1,2]) or about 95%.

One conclusion for this dialogue process on spam classification would be to recommend writing the

business goals as maximizing sensitivity while maintaining a specificity of at least 0.999.

Evaluating scoring models

Evaluating models that assign scores can be a somewhat visual task. The main concept is looking at

what is called the residuals or the difference between our predictions.

f(x[i,]) and actual outcomes y[i].

d <- data.frame(y=(1:10)^2,x=1:10)

Data Science A.Y. 2023-2024

Department of CSE Page 61

model <- lm(y~x,data=d)

d$prediction <- predict(model,newdata=d)

library('ggplot2')

ggplot(data=d) + geom_point(aes(x=x,y=y)) +

geom_line(aes(x=x,y=prediction),color='blue') +

geom_segment(aes(x=x,y=prediction,yend=y,xend=x)) +

scale_y_continuous('')

ROOT MEAN SQUARE ERROR

The most common goodness-of-fit measure is called root mean square error (RMSE). This is the

square root of the average square of the difference between our prediction and actual values. Think

of it as being like a standard deviation: how much your prediction is typically off.

R-SQUARED

Another important measure of fit is called R-squared (or R2, or the coefficient of determination).

It’s defined as 1.0 minus how much unexplained variance your model leaves (measured relative to a

null model of just using the average y as a prediction).

CORRELATION

Correlation is very helpful in checking if variables are potentially useful in a model. Be advised that

there are at least three calculations that go by the name of correlation:Pearson, Spearman, and

Kendall (see help(cor)). The Pearson coefficient checks for linear relations, the Spearman

coefficient checks for rank or ordered relations, and the Kendall coefficient checks for degree of

voting agreement. Each of these coefficients performs a progressively more drastic transform than

the one before and has well-known direct significance tests (see help(cor.test)).

DON’T USE CORRELATION TO EVALUATE MODEL QUALITY IN PRODUCTION

It’s tempting to use correlation to measure model quality, but we advise against it. The problem is

Data Science A.Y. 2023-2024

Department of CSE Page 62

this: correlation ignores shifts and scaling factors. So correlation is actually computing if there is

any shift and rescaling of your predictor that is a good predictor. This isn’t a problem for training

data (as these predictions tend to not have a systematic bias in shift or scaling by design) but can

mask systematic errors that may arise when a model is used in production.

ABSOLUTE ERROR

For many applications (especially those involving predicting monetary amounts), measures such as

absolute error (sum(abs(d$prediction-d$y))), mean absolute error (sum(abs(d$prediction

d$y))/length(d$y)), and relative absolute error (sum(abs(d$prediction-d$y))/sum(abs(d$y))) are

tempting measures. It does make sense to check and report these measures, but it’s usually not

advisable to make these measures the project goal or to attempt to directly optimize them. This is

because absolute error measures tend not to “get aggregates right” or “roll up reasonably” as most

of the squared errors do. As an example, consider an online advertising company with three

advertisement purchases returning $0, $0, and $25 respectively. Suppose our modeling task is as

simple as picking a single summary value not too far from the original three prices. The price

minimizing absolute error is the median, which is $0, yielding an absolute error of

sum(abs(c(0,0,25)-20)), or $25. The price minimizing square error is the mean, which is $8.33

(which has a worse absolute error of $33.33). However the median price of $0 misleadingly values

the entire campaign at $0. One great advantage of the mean is this: aggregating a mean prediction

gives an unbiased prediction of the aggregate in question. It is often an unstated project need that

various totals or roll-ups of the predicted amounts be close to the roll-ups of the unknown values to

be predicted. For monetary applications, predicting the totals or aggregates accurately is often more

important than getting individual values right. In fact, most statistical modeling techniques are

designed for regression, which is the unbiased prediction of means or

expected values.

Evaluating probability models

Probability models are useful for both classification and scoring tasks. Probability models are

models that both decide if an item is in a given class and return an estimated probability (or

confidence) of the item being in the class. The modeling techniques of logistic regression and

decision trees are fairly famous for being able to return good probability estimates. Such models can

be evaluated on their final decisions, most of the measures for probability models are very technical

and very good at comparing the qualities of different models on the same dataset. But these criteria

aren’t easy to precisely translate into businesses needs. So we recommend tracking them, but not

using them with your project sponsor or client.

Data Science A.Y. 2023-2024

Department of CSE Page 63

Distribution of score broken up by known classes

THE RECEIVER OPERATING CHARACTERISTIC CURVE

The receiver operating characteristic curve (or ROC curve) is a popular alternative to the

double density plot. For each different classifier we’d get by picking a different score

threshold between positive and negative determination, we plot both the true positive

rate and the false positive rate. This curve represents every possible trade-off between

sensitivity and specificity that is available for this classifier. The steps to produced the

ROC plot.

Data Science A.Y. 2023-2024

Department of CSE Page 64

library('ROCR')

eval <- prediction(spamTest$pred,spamTest$spam)

plot(performance(eval,"tpr","fpr"))

print(attributes(performance(eval,'auc'))$y.values[[1]])

[1] 0.9660072

LOG LIKELIHOOD

An important evaluation of an estimated probability is the log likelihood. The log likelihood is the

logarithm of the product of the probability the model assigned to each example.2 For a spam email

with an estimated likelihood of 0.9 of being spam, the log likelihood is log(0.9); for a non-spam

email, the same score of 0.9 is a log likelihood of log(1-0.9) (or just the log of 0.1, which was the

estimated probability of not being spam). The principle is this: if the model is a good explanation,

then the data should look likely (not implausible) under the model. The following listing shows how

the log likelihood of our example is derived.

> sum(ifelse(spamTest$spam=='spam',

log(spamTest$pred),

log(1-spamTest$pred)))

[1] -134.9478

> sum(ifelse(spamTest$spam=='spam',

log(spamTest$pred),

log(1-spamTest$pred)))/dim(spamTest)[[1]]

[1] -0.2946458

The first term (-134.9478) is the model log likelihood the model assigns to the test data. This

number will always be negative, and is better as we get closer to 0. The second expression is the log

likelihood rescaled by the number of data points to give us a rough average surprise per data point.

Now a good null model in this case would be always returning the probability of 180/458 (the

number of known spam emails over

the total number of emails as the best single-number estimate of the chance of spam). This null

model gives the log likelihood shown in the next listing.

Data Science A.Y. 2023-2024

Department of CSE Page 65

DEVIANCE

Another common measure when fitting probability models is the deviance. The deviance is defined

as -2*(logLikelihood-S), where S is a technical constant called “the log likelihood of the saturated

model.” The lower the residual deviance, the better the model. In most cases, the saturated model is

a perfect model that returns probability 1 for items in the class and probability 0 for items not in the

class (so S=0).

AIC

An important variant of deviance is the Akaike information criterion (AIC). This is equivalent to

deviance + 2*numberOfParameters used in the model used to make the prediction. Thus, AIC is

deviance penalized for model complexity. A nice trick is to do as the Bayesians do: use Bayesian

information criterion (BIC) (instead of AIC) where an empirical estimate of the model complexity

(such as 2*2^entropy, instead of 2*numberOfParameters) is used as the penalty.

ENTROPY

Entropy is a fairly technical measure of information or surprise, and is measured in a unit called bits.

If p is a vector containing the probability of each possible outcome, then the entropy of the

outcomes is calculated as sum(-p*log(p,2)) (with the convention that 0*log(0) = 0). As entropy

measures surprise, you want what’s called the conditional entropy of your model to be appreciably

lower than the original entropy. The conditional entropy is a measure that gives an indication of

how good the prediction is on different categories, tempered by how often it predicts different

categories.

Data Science A.Y. 2023-2024

Department of CSE Page 66

UNIT – IV

Modelling Methods-II: Linear and logistic regression

Using linear regression: Understanding linear regression, Building a linear regression model,

making predictions.

Using logistic regression: Understanding logistic regression, Building a logistic regression model,

making predictions.

LINEAR AND LOGISTIC REGRESSION :

Linear models are especially useful when you don’t want only to predict an outcome, but also to

know the relationship between the input variables and the outcome. This knowledge can prove

useful because this relationship can often be used as advice on how to get the outcome that you

want. We’ll first define linear regression and then use it to predict customer income. Later, we will

use logistic regression to predict the probability that a newborn baby will need extra medical

attention. We’ll also walk through the diagnostics that R produces when you fit a linear or logistic

model.Linear methods can work well in a surprisingly wide range of situations. However, there can

be issues when the inputs to the model are correlated or collinear. In the case of logistic regression,

there can also be issues (ironically) when a subset of the variables predicts a classification output

perfectly in a subset of the training data.

USING LINEAR REGRESSION :

Linear regression is the bread and butter prediction method for statisticians and data scientists. If

you’re trying to predict a numerical quantity like profit, cost, or sales volume, you should always

try linear regression first. If it works well, you’re done; if it fails, the detailed diagnostics produced

can give you a good clue as to what methods you should try next.

UNDERSTANDING LINEAR REGRESSION :

Example Suppose you want to predict how many pounds a person on a diet and exercise plan will

lose in a month. You will base that prediction on other facts about that person, like how much they

reduce their average daily caloric intake over that month and how many hours a day they exercised.

In other words, for every person i, you want to predict pounds lost[i] based on daily_cals_down[i]

and daily_exercise[i].

Linear regression assumes that the outcome pounds_lost is linearly related to each of the inputs

daily_cals_down[i] and daily_exercise[i]. This means that the relationship between (for instance)

daily_cals_down[i] and pounds_lost looks like a (noisy) straight line, as shown in figure 7.2.1

Data Science A.Y. 2023-2024

Department of CSE Page 67

The relationship between daily_exercise and pounds_lost would similarly be a straight line.

Suppose that the equation of the line shown in figure 7.2 is

pounds_lost = bc0 + b.cals * daily_cals_down

This means that for every unit change in daily_cals_down (every calorie reduced), the value of

pounds_lost changes by b.cals, no matter what the starting value of daily_cals_down was. To make

it concrete, suppose pounds_lost = 3 + 2 * daily_ cals_down. Then increasing daily_cals_down by

one increases pounds_lost by 2, no matter what value of daily_cals_down you start with. This

would not be true for, say, pounds_lost = 3 + 2 * (daily_cals_down^2).

Linear regression further assumes that the total pounds lost is a linear combination of our variables

daily_cals_down[i] and daily_exercise[i], or the sum of the pounds lost due to reduced caloric

intake, and the pounds lost due to exercise. This gives us the following form for the linear

regression model of pounds_lost:

pounds_lost[i] = b0 + b.cals * daily_cals_down[i] +

b.exercise * daily_exercise[i]

The goal of linear regression is to find the values of b0, b.cals, and b.exercise so that the linear

combination of daily_cals_lost[i] and daily_exercise[i] (plus some offset b0) comes very close to

pounds_lost[i] for all persons i in the training data. Let’s put this in more general terms. Suppose

that y[i] is the numeric quantity you want to predict (called the dependent or response variable), and

x[i,] is a row of inputs that corresponds to output y[i] (the x[i,] are the independent or explanatory

variables). Linear regression attempts to find a function f(x) such that

Data Science A.Y. 2023-2024

Department of CSE Page 68

y[i] ~ f(x[i,]) + e[i] = b[0] + b[1] * x[i,1] + ... + b[n] * x[i,n] + e[i]

The expression for a linear regression model

You want numbers b[0],...,b[n] (called the coefficients or betas) such that f(x[i,]) is as near as

possible to y[i] for all (x[i,],y[i]) pairs in the training data. R supplies a one-line command to find

these coefficients: lm(). The last term in equation 7.1, e[i], represents what are called unsystematic

errors, or noise. Unsystematic errors are defined to all have a mean value of 0 (so they don’t

represent a net upward or net downward bias) and are defined as uncorrelated with x[i,]. In other

words, x[i,] should not encode information about e[i] (or vice versa).

By assuming that the noise is unsystematic, linear regression tries to fit what is called an “unbiased”

predictor. This is another way of saying that the predictor gets the right answer “on average” over

the entire training set, or that it underpredicts about as much as it overpredicts. In particular,

unbiased estimates tend to get totals correct.

Example Suppose you have fit a linear regression model to predict weight loss based on reduction

of caloric intake and exercise. Now consider the set of subjects in the training data, LowExercise,

who exercised between zero and one hour a day. Together, these subjects lost a total of 150 pounds

over the course of the study. How much did the model predict they would lose?

With a linear regression model, if you take the predicted weight loss for all the subjects in Low

Exercise and sum them up, that total will sum to 150 pounds, which means that the model predicts

the average weight loss of a person in the Low Exercise group correctly, even though some of the

individuals will have lost more than the model predicted, and some of them will have lost less. In a

business setting, getting sums like this correct is critical, particularly when summing up monetary

amounts. Under these assumptions (linear relationships and unsystematic noise), linear regression is

absolutely relentless in finding the best coefficients b[i]. If there’s some advantageous combination

or cancellation of features, it’ll find it. One thing that linear regression doesn’t do is reshape

variables to be linear. Oddly enough, linear regression often does an excellent job, even when the

actual relation is not in fact linear.

INTRODUCING THE PUMS DATASET

Example Suppose you want to predict personal income of any individual in the general

public, within some relative percent, given their age, education, and other demographic variables. In

addition to predicting income, you also have a secondary goal: to determine the effect of a

bachelor’s degree on income, relative to having no degree at all.

Data Science A.Y. 2023-2024

Department of CSE Page 69

For this task, you will use the 2016 US Census PUMS dataset. For simplicity, we have

prepared a small sample of PUMS data to use for this example. The data preparation

steps include these:

 Restricting the data to full-time employees between 20 and 50 years of age, with

an income between $1,000 and $250,000.

 Dividing the data into a training set, dtrain, and a test set, dtest.

Each row of PUMS data represents a single anonymized person or household. Personal data

recorded includes occupation, level of education, personal income, and many other demographic

variables. For this example we have decided to predict log10(PINCP), or the logarithm of income.

Fitting logarithm-transformed data typically gives results with smaller relative error, emphasizing

smaller errors on smaller incomes. But this improved relative error comes at a cost of introducing a

bias: on average, predicted incomes are going to be below actual training incomes. An unbiased

alternative to predicting log(income) would be to use a type of generalized linear model called

Poisson regression. The Poisson regression is unbiased, but typically at the cost of larger relative

errors.1 For the analysis in this section, we’ll consider the input variables age (AGEP), sex (SEX),

class of worker (COW), and level of education (SCHL). The output variable is personal income

(PINCP). We’ll also set the reference level, or “default” sex to M (male); the reference level of class

of worker to Employee of a private for-profit; and the reference level of education level to no high

school diploma.

Data Science A.Y. 2023-2024

Department of CSE Page 70

BUILDING A LINEAR REGRESSION MODEL

The first step in either prediction or finding relations (advice) is to build the linear regression model.

The function to build the linear regression model in R is lm(), supplied by the stats package. The

most important argument to lm() is a formula with ~ used in place of an equals sign. The formula

specifies what column of the data frame is the quantity to be predicted, and what columns are to be

used to make the predictions. Statisticians call the quantity to be predicted the dependent variable

and the variables/ columns used to make the prediction the independent variables. We find it is

easier to call the quantity to be predicted the y and the variables used to make the predictions the xs.

Our formula is this: log10(PINCP) ~ AGEP + SEX + COW + SCHL, which is read “Predict the log

base 10 of income as a function of age, sex, employment class, and education.”

R STORES TRAINING DATA IN THE MODEL R holds a copy of the training data in

its model to supply the residual information seen in summary(model). Holding a copy of the data

this way is not strictly necessary, and can needlessly run you out of memory. If you’re running low

on memory (or swapping), you can dispose of R objects like model using the rm() command. In this

case, you’d dispose of the model by running rm("model").

MAKING PREDICTIONS:

Once you’ve called lm() to build the model, your first goal is to predict income. This is easy to do in

R. To predict, you pass data into the predict() method. Figure demonstrates this using both the test

and training data frames dtest and dtrain.

Data Science A.Y. 2023-2024

Department of CSE Page 71

The data frame columns dtest$predLogPINCP and dtrain$predLogPINCP now store the predictions

for the test and training sets, respectively. We have now both produced and applied a linear

regression model.

USING LOGISTIC REGRESSION:

Logistic regression is the most important (and probably most used) member of a class of models

called generalized linear models. Unlike linear regression, logistic regression can directly predict

values that are restricted to the (0, 1) interval, such as probabilities. It’s the go-to method for

predicting probabilities or rates, and like linear regression, the coefficients of a logistic regression

model can be treated as advice. It’s also a good first choice for binary classification problems. In

this section, we’ll use a medical classification example (predicting whether a

newborn will need extra medical attention) to work through all the steps of producing and using a

logistic regression model.1 As we did with linear regression, we’ll take a quick overview of logistic

regression before tackling the main example.

UNDERSTANDING LOGISTIC REGRESSION

Example Suppose you want to predict whether or not a flight will be delayed, based on

Data Science A.Y. 2023-2024

Department of CSE Page 72

facts like the flight’s origin and destination, weather, and air carrier. For every flight i, you want to

predict flight_delayed[i] based on origin[i], destination[i], weather[i], and air_carrier[i].

We’d like to use linear regression to predict the probability that a flight i will be delayed, but

probabilities are strictly in the range 0:1, and linear regression doesn’t restrict its prediction to that

range.

One idea is to find a function of probability that is in the range -Infinity:Infinity, fit a linear model

to predict that quantity, and then solve for the appropriate probabilities from the model predictions.

So let’s look at a slightly different problem: instead of predicting the probability that a flight is

delayed, consider the odds that the flight is delayed, or the ratio of the probability that the flight is

delayed over the probability that it is not.

odds[flight_delayed] = P[flight_delayed == TRUE] / P[flight_delayed == FALSE]

The range of the odds function isn’t -Infinity:Infinity; it’s restricted to be a nonnegative

number. But we can take the log of the odds---the log-odds---to get a function of the probabilities

that is in the range -Infinity:Infinity.

log_odds[flight_delayed] = log(P[flight_delayed == TRUE] / P[flight_delayed =

= FALSE])

Let: p = P[flight_delayed == TRUE]; then

log_odds[flight_delayed] = log(p / (1 - p))

Note that if it’s more likely that a flight will be delayed than on time, the odds ratio will be greater

than one; if it’s less likely that a flight will be delayed than on time, the odds ratio will be less than

one. So the log-odds is positive if it’s more likely that the flight will be delayed, negative if it’s

more likely that the flight will be on time, and zero if the chances of delay are 50-50.

The log-odds of a probability p is also known as logit(p). The inverse of logit(p) is the sigmoid

function, shown in figure 7.13. The sigmoid function maps values in the range from -

Infinity:Infinity to the range 0:1—in this case, the sigmoid maps unbounded log-odds ratios to a

probability value that is between 0 and 1.

logit <- function(p) { log(p/(1-p)) }

s <- function(x) { 1/(1 + exp(-x))}

s(logit(0.7))

[1] 0.7

logit(s(-2))

-2

Data Science A.Y. 2023-2024

Department of CSE Page 73

BUILDING A LOGISTIC REGRESSION MODEL

The function to build a logistic regression model in R is glm(), supplied by the stats package. In our

case, the dependent variable y is the logical (or Boolean) atRisk; all the other variables in table 7.1

are the independent variables x. The formula for building a model to predict atRisk using these

variables is rather long to type in by hand; you can generate the formula using the mk_formula()

function from the wrapr package, as shown next.

Data Science A.Y. 2023-2024

Department of CSE Page 74

This is similar to the linear regression call to lm(), with one additional argument:

family = binomial(link = "logit"). The family function specifies the assumed distribution of the

dependent variable y. In our case, we’re modeling y as a binomial distribution, or as a coin whose

probability of heads depends on x. The link function “links” the output to a linear model—it’s as if

you pass y through the link function, and then model the resulting value as a linear function of the x

values. Different combinations of family functions and link functions lead to different kinds of

generalized linear models (for example, Poisson, or probit). In this book, we’ll only discuss logistic

models, so we’ll only need to use the binomial family with the logit link

MAKING PREDICTIONS

Making predictions with a logistic model is similar to making predictions with a linear model—use

the predict() function. The following code stores the predictions for the training and test sets as the

column pred in the respective data frames.

Applying the logistic regression model.

train$pred <- predict(model, newdata=train, type = "response")

test$pred <- predict(model, newdata=test, type="response")

Data Science A.Y. 2023-2024

Department of CSE Page 75

Note the additional parameter type = "response". This tells the predict() function to return the

predicted probabilities y. If you don’t specify type = "response", then by default predict() will return

the output of the link function, logit(y). One strength of logistic regression is that it preserves the

marginal probabilities of the training data. That means that if you sum the predicted probability

scores for the entire training set, that quantity will be equal to the number of positive outcomes

(atRisk == TRUE) in the training set. This is also true for subsets of the data determined by

variables included in the model. For example, in the subset of the training data that has

train$GESTREC == "<37 weeks" (the baby was premature), the sum of the predicted probabilities

equals the number of positive training examples.

Data Science A.Y. 2023-2024

Department of CSE Page 76

UNIT-V

Data visualization with R

Introduction to ggplot2: A worked example, Placing the data and mapping options, Graphs as
objects, Univariate Graphs: Categorical, Quantitative.

Bivariate Graphs- Categorical vs. Categorical, Quantitative vs Quantitative, Categorical vs.

Quantitative, Multivariate Graphs : Grouping, Faceting.

Introduction to ggplot2:

A worked example

The functions in the ggplot2 package build up a graph in layers. We’ll build a complex graph by

starting with a simple graph and adding additional elements, one at a time.

The example uses data from the 1985 Current Population Survey to explore the relationship be-

tween wages (wage) and experience (expr).

In building a ggplot2 graph, only the first two functions described below are required. The other

functions are optional and can appear in any order.

ggplot

The first function in building a graph is the ggplot function. It specifies the

 data frame containing the data to be plotted

 the mapping of the variables to visual properties of the graph. The mappings are placed

within the aes function (where aes stands for aesthetics).

Figure: Map variables

Why is the graph empty? We specified that the exper variable should be mapped to the x-axis

and that the wage should be mapped to the y-axis, but we haven’t yet specified what we wanted

placed on the graph.

load data

data(CPS85 , package ="mosaicData")

specify dataset and mapping

library(ggplot2)

ggplot(data = CPS85,

mapping =aes(x =exper, y = wage))

https://rkabacoff.github.io/datavis/Data.html#CPS85

Data Science A.Y. 2023-2024

Department of CSE Page 77

geoms

Geoms are the geometric objects (points, lines, bars, etc.) that can be placed on a graph. They are

added using functions that start with geom_. In this example, we’ll add points using

the geom_point function, creating a scatterplot.

In ggplot2 graphs, functions are chained together using the + sign to build a final plot.

add points

ggplot(data = CPS85,

mapping =aes(x =exper, y = wage)) +

geom_point()

Figure: Add points

The graph indicates that there is an outlier. One individual has a wage much higher than the rest.

We’ll delete this case before continuing.

Figure: Remove outlier

A number of parameters (options) can be specified in a geom_ function. Options for

the geom_point function include color, size, and alpha. These control the point color, size, and

delete outlier

library(dplyr)
plotdata<-filter(CPS85, wage <40)

redraw scatterplot

ggplot(data =plotdata,

mapping =aes(x =exper, y = wage)) +

geom_point()

Data Science A.Y. 2023-2024

Department of CSE Page 78

transparency, respectively. Transparency ranges from 0 (completely transparent) to 1 (complete-

ly opaque). Adding a degree of transparency can help visualize overlapping points.

Figure: Modify point color, transparency, and size

Next, let’s add a line of best fit. We can do this with the geom_smooth function. Options control

the type of line (linear, quadratic, nonparametric), the thickness of the line, the line’s color, and

the presence or absence of a confidence interval. Here we request a linear regression (method =

lm) line (where lm stands for linear model).

Figure: Add line of best fit

Wages appears to increase with experience.

make points blue, larger, and semi-transparent

ggplot(data =plotdata,
mapping =aes(x =exper, y = wage)) +

geom_point(color ="cornflowerblue",

alpha = .7,

size =3)

add a line of best fit.

ggplot(data =plotdata,

mapping =aes(x =exper, y = wage)) +

geom_point(color ="cornflowerblue",

alpha = .7,

size =3) +

geom_smooth(method ="lm")

Data Science A.Y. 2023-2024

Department of CSE Page 79

grouping

In addition to mapping variables to the x and y axes, variables can be mapped to the color, shape,

size, transparency, and other visual characteristics of geometric objects. This allows groups of

observations to be superimposed in a single graph.

Let’s add sex to the plot and represent it by color.

Figure: Include sex, using color

The color = sex option is placed in the aes function, because we are mapping a variable to an

aesthetic. The geom_smooth option (se = FALSE) was added to suppresses the confidence inter-

vals.

It appears that men tend to make more money than women. Additionally, there may be a stronger

relationship between experience and wages for men than than for women.

scales

Scales control how variables are mapped to the visual characteristics of the plot. Scale functions

(which start with scale_) allow you to modify this mapping. In the next plot, we’ll change

modify the x and y axes and specify the colors to be used
ggplot(data =plotdata,

mapping =aes(x =exper,

y = wage,

color = sex)) +

geom_point(alpha = .7,

size =3) +

geom_smooth(method ="lm",

se =FALSE,
size =1.5) +

indicate sex using color

ggplot(data =plotdata,

mapping =aes(x =exper,

y = wage,

color = sex)) +

geom_point(alpha = .7,
size =3) +

geom_smooth(method ="lm",

se =FALSE,

size =1.5)

Data Science A.Y. 2023-2024

Department of CSE Page 80

the x and y axis scaling, and the colors employed.

Figure: Change colors and axis labels

We’re getting there. The numbers on the x and y axes are better, the y axis uses dollar notation,

and the colors are more attractive (IMHO).

Here is a question. Is the relationship between experience, wages and sex the same for each job

sector? Let’s repeat this graph once for each job sector in order to explore this.

facets

Facets reproduce a graph for each level a given variable (or combination of variables). Facets are

created using functions that start with facet_. Here, facets will be defined by the eight levels of

the sector variable.

scale_x_continuous(breaks =seq(0, 60, 10)) +

scale_y_continuous(breaks =seq(0, 30, 5),

label =scales::dollar) +

scale_color_manual(values =c("indianred3",

"cornflowerblue"))

reproduce plot for each level of job sector
ggplot(data =plotdata,

mapping =aes(x =exper,

y = wage,

color = sex)) +

geom_point(alpha = .7) +

geom_smooth(method ="lm",

se =FALSE) +

scale_x_continuous(breaks =seq(0, 60, 10)) +

scale_y_continuous(breaks =seq(0, 30, 5),

label =scales::dollar) +

scale_color_manual(values =c("indianred3",

"cornflowerblue")) +

facet_wrap(~sector)

Data Science A.Y. 2023-2024

Department of CSE Page 81

Figure: Add job sector, using faceting

It appears that the differences between mean and women depend on the job sector under consid-

eration.

labels

Graphs should be easy to interpret and informative labels are a key element in achieving this

goal. The labs function provides customized labels for the axes and legends. Additionally, a cus-

tom title, subtitle, and caption can be added.

add informative labels

ggplot(data =plotdata,

mapping =aes(x =exper,

y = wage,

color = sex)) +

geom_point(alpha = .7) +

geom_smooth(method ="lm",

se =FALSE) +

scale_x_continuous(breaks =seq(0, 60, 10)) +
scale_y_continuous(breaks =seq(0, 30, 5),

label =scales::dollar) +

scale_color_manual(values =c("indianred3",

"cornflowerblue")) +

facet_wrap(~sector) +
labs(title ="Relationship between wages and experience",
subtitle ="Current Population Survey",

caption ="source: http://mosaic-web.org/",

x =" Years of Experience",

y ="Hourly Wage",

color ="Gender")

http://mosaic-web.org/

Data Science A.Y. 2023-2024

Department of CSE Page 82

Figure: Add informative titles and labels

Now a viewer doesn’t need to guess what the labels expr and wage mean, or where the data

come from.

themes

Finally, we can fine tune the appearance of the graph using themes. Theme functions (which start

with theme_) control background colors, fonts, grid-lines, legend placement, and other non-data

related features of the graph. Let’s use a cleaner theme.

use a minimalist theme

ggplot(data =plotdata,

mapping =aes(x =exper,

y = wage,

color = sex)) +

geom_point(alpha = .6) +

geom_smooth(method ="lm",

se =FALSE) +

scale_x_continuous(breaks =seq(0, 60, 10)) +

scale_y_continuous(breaks =seq(0, 30, 5),

label =scales::dollar) +

scale_color_manual(values =c("indianred3",

"cornflowerblue")) +

facet_wrap(~sector) +
labs(title ="Relationship between wages and experience",

subtitle ="Current Population Survey",

caption ="source: http://mosaic-web.org/",
x =" Years of Experience",

y ="Hourly Wage",

color ="Gender") +

theme_minimal()

http://mosaic-web.org/

Data Science A.Y. 2023-2024

Department of CSE Page 83

Figure: Use a simpler theme

Now we have something. It appears that men earn more than women in management, manufac-

turing, sales, and the “other” category. They are most similar in clerical, professional, and ser-

vice positions. The data contain no women in the construction sector. For management positions,

wages appear to be related to experience for men, but not for women (this may be the most inter-

esting finding). This also appears to be true for sales.

Of course, these findings are tentative. They are based on a limited sample size and do not in-

volve statistical testing to assess whether differences may be due to chance variation.

Placing the data and mapping options

Plots created with ggplot2 always start with the ggplot function. In the examples above,

the data and mapping options were placed in this function. In this case they apply to

each geom_ function that follows.

You can also place these options directly within a geom. In that case, they only apply only to

that specific geom.

Consider the following graph.

placingcolor mapping in the ggplot function

ggplot(plotdata,
aes(x =exper,

y = wage,

color = sex)) +

geom_point(alpha = .7,

size =3) +

geom_smooth(method ="lm",

formula = y ~poly(x,2),

se =FALSE,
size =1.5)

Data Science A.Y. 2023-2024

Department of CSE Page 84

Figure: Color mapping in ggplot function

Since the mapping of sex to color appears in the ggplot function, it applies

to both geom_point and geom_smooth. The color of the point indicates the sex, and a separate

colored trend line is produced for men and women. Compare this to

Figure12: Color mapping in ggplot function

Since the sex to color mapping only appears in the geom_point function, it is only used there. A

single trend line is created for all observations.

Most of the examples in this book place the data and mapping options in the ggplot function.

Additionally, the phrases data= and mapping= are omitted since the first option always refers to

data and the second option always refers to mapping.

Graphs as objects

A ggplot2 graph can be saved as a named R object (like a data frame), manipulated further, and

then printed or saved to disk.

placingcolor mapping in the geom_point function
ggplot(plotdata,

aes(x =exper,

y = wage)) +

geom_point(aes(color = sex),

alpha = .7,

size =3) +

geom_smooth(method ="lm",

formula = y ~poly(x,2),

se =FALSE,
size =1.5)

Data Science A.Y. 2023-2024

Department of CSE Page 85

prepare data

data(CPS85 , package ="mosaicData")

Univariate graphs

Univariate graphs plot the distribution of data from a single variable. The variable can be cate-

gorical (e.g., race, sex) or quantitative (e.g., age, weight).

Categorical

The distribution of a single categorical variable is typically plotted with a bar chart, a pie chart,

or (less commonly) a tree map.

Bar chart

The Marriage dataset contains the marriage records of 98 individuals in Mobile County, Ala-

bama. Below, a bar chart is used to display the distribution of wedding participants by race.

plotdata<-CPS85[CPS85$wage <40,]

create scatterplot and save it

myplot<-ggplot(data =plotdata,

aes(x =exper, y = wage)) +

geom_point()

print the graph

myplot

make the points larger and blue

then print the graph

myplot<-myplot+geom_point(size =3, color ="blue")

myplot

print the graph with a title and line of best fit

but don't save those changes

myplot+geom_smooth(method ="lm") +

labs(title ="Mildly interesting graph")

print the graph with a black and white theme

but don't save those changes

myplot+theme_bw()

library(ggplot2)

data(Marriage, package ="mosaicData")

plot the distribution of race

ggplot(Marriage, aes(x = race)) +

geom_bar()

https://rkabacoff.github.io/datavis/Data.html#Marriage

Data Science A.Y. 2023-2024

Department of CSE Page 86

Figure: Simple barchart

Percents

Bars can represent percents rather than counts. For bar charts, the code aes(x=race) is actually a

shortcut for aes(x = race, y = ..count..), where ..count.. is a special variable representing the fre-

quency within each category. You can use this to calculate percentages, by specifying

the y variable explicitly.

Figure: Barchart with percentages

In the code above, the scales package is used to add % symbols to the y-axis labels.

Sorting categories

It is often helpful to sort the bars by frequency. In the code below, the frequencies are calculated

explicitly. Then the reorder function is used to sort the categories by the frequency. The op-

tion stat="identity" tells the plotting function not to calculate counts, because they are supplied

plot the distribution as percentages

ggplot(Marriage,
aes(x = race,

y = ..count.. /sum(..count..))) +

geom_bar() +

labs(x ="Race",

y ="Percent",

title ="Participants by race") +

scale_y_continuous(labels = scales::percent)

calculate number of participants in

each race category

library(dplyr)

plotdata<-Marriage %>%

Data Science A.Y. 2023-2024

Department of CSE Page 87

directly.

count(race)

The resulting dataset is give below.

Table 5.1: plotdata

Race n

American Indian 1

Black 22

Hispanic 1

White 74

This new dataset is then used to create the graph.

Figure: Sorted bar chart

The graph bars are sorted in ascending order. Use reorder(race, -n) to sort in descending order.

Labeling bars

Finally, you may want to label each bar with its numerical value.

plot the bars in ascending order

ggplot(plotdata,

aes(x =reorder(race, n),

y = n)) +

geom_bar(stat ="identity") +
labs(x ="Race",

y ="Frequency",

title ="Participants by race")

plot the bars with numeric labels

ggplot(plotdata,

aes(x = race,

y = n)) +

geom_bar(stat ="identity") +

geom_text(aes(label = n),

vjust=-0.5) +

labs(x ="Race",

y ="Frequency",

Data Science A.Y. 2023-2024

Department of CSE Page 88

title ="Participants by race")

Figure: Bar chart with numeric labels

Overlapping labels

Category labels may overlap if (1) there are many categories or (2) the labels are long. Consider

the distribution of marriage officials.

Figure: Barchart with problematic labels

Pie chart

Pie charts are controversial in statistics. If your goal is to compare the frequency of categories,

you are better off with bar charts (humans are better at judging the length of bars than the vol-

ume of pie slices). If your goal is compare each category with the the whole (e.g., what portion

of participants are Hispanic compared to all participants), and the number of categories is small,

then pie charts may work for you. It takes a bit more code to make an attractive pie chart in R.

basic bar chart with overlapping labels

ggplot(Marriage, aes(x =officialTitle)) +

geom_bar() +

labs(x ="Officiate",

y ="Frequency",

title ="Marriages by officiate")

create a basic ggplot2 pie chart

plotdata<-Marriage %>%

count(race) %>%

arrange(desc(race)) %>%

mutate(prop =round(n *100/sum(n), 1),

Data Science A.Y. 2023-2024

Department of CSE Page 89

Figure: Basic pie chart

Tree map

An alternative to a pie chart is a tree map. Unlike pie charts, it can handle categorical variables

that have many levels.

lab.ypos =cumsum(prop) -0.5*prop)

ggplot(plotdata,

aes(x ="",

y = prop,

fill = race)) +

geom_bar(width =1,

stat ="identity",

color ="black") +

coord_polar("y",

start =0,

direction =-1) +

theme_void()

library(treemapify)

create a treemap of marriage officials

plotdata<-Marriage %>%

count(officialTitle)

ggplot(plotdata,

aes(fill =officialTitle,

area = n)) +

geom_treemap() +

labs(title ="Marriages by officiate")

Data Science A.Y. 2023-2024

Department of CSE Page 90

Figure: Basic treemap

Quantitative

The distribution of a single quantitative variable is typically plotted with a histogram, kernel

density plot, or dot plot.

Histogram

Using the Marriage dataset, let’s plot the ages of the wedding participants.

Figure: Basic histogram

Bins and bandwidths

One of the most important histogram options is bins, which controls the number of bins into

which the numeric variable is divided (i.e., the number of bars in the plot). The default is 30, but

it is helpful to try smaller and larger numbers to get a better impression of the shape of the dis-

plot the histogram with 20 bins

ggplot(Marriage, aes(x = age)) +

geom_histogram(fill ="cornflowerblue",

color ="white",

bins =20) +

labs(title="Participants by age",

library(ggplot2)

plot the age distribution using a histogram

ggplot(Marriage, aes(x = age)) +

geom_histogram() +

labs(title ="Participants by age",

x ="Age")

https://rkabacoff.github.io/datavis/Data.html#Marriage

Data Science A.Y. 2023-2024

Department of CSE Page 91

tribution.

Figure: Histogram with a specified number of bins

Kernel Density plot

An alternative to a histogram is the kernel density plot. Technically, kernel density estimation is

a nonparametric method for estimating the probability density function of a continuous random

variable. (What??) Basically, we are trying to draw a smoothed histogram, where the area under

the curve equals one.

Figure: Basic kernel density plot

Smoothing parameter

The degree of smoothness is controlled by the bandwidth parameter bw. To find the default val-

ue for a particular variable, use the bw.nrd0 function. Values that are larger will result in more

smoothing, while values that are smaller will produce less smoothing.

subtitle ="number of bins = 20",

x ="Age")

Create a kernel density plot of age

ggplot(Marriage, aes(x = age)) +

geom_density() +

labs(title ="Participants by age")

default bandwidth for the age variable
bw.nrd0(Marriage$age)

[1] 5.181946

Create a kernel density plot of age

Data Science A.Y. 2023-2024

Department of CSE Page 92

Figure: Kernel density plot with a specified bandwidth

Dot Chart

Another alternative to the histogram is the dot chart. Again, the quantitative variable is divided

into bins, but rather than summary bars, each observation is represented by a dot. By default, the

width of a dot corresponds to the bin width, and dots are stacked, with each dot representing one

observation. This works best when the number of observations is small (say, less than 150).

Figure: Basic dotplot

Bivariate Graphs:

Bivariate graphs display the relationship between two variables. The type of graph will depend

on the measurement level of the variables (categorical or quantitative).

ggplot(Marriage, aes(x = age)) +

geom_density(fill ="deepskyblue",

bw =1) +

labs(title ="Participants by age",

subtitle ="bandwidth = 1")

plot the age distribution using a dotplot

ggplot(Marriage, aes(x = age)) +

geom_dotplot() +

labs(title ="Participants by age",

y ="Proportion",

x ="Age")

Data Science A.Y. 2023-2024

Department of CSE Page 93

library(ggplot2)

grouped bar plot

ggplot(mpg,

aes(x = class,

fill =drv)) +

Categorical vs. Categorical

When plotting the relationship between two categorical variables, stacked, grouped, or segment-

ed bar charts are typically used. A less common approach is the mosaic chart.

Stacked bar chart

Let’s plot the relationship between automobile class and drive type (front-wheel, rear-wheel, or4-

wheel drive) for the automobiles in the Fuel economy dataset.

Figure: Stacked bar chart

Stacked is the default, so the last line could have also been written as geom_bar().

Grouped bar chart

Grouped bar charts place bars for the second categorical variable side-by-side. To create a

grouped bar plot use the position = "dodge" option.

geom_bar(position ="dodge")

library(ggplot2)

stacked bar chart

ggplot(mpg,

aes(x = class,

fill =drv)) +

geom_bar(position ="stack")

https://rkabacoff.github.io/datavis/Models.html#Mosaic
https://rkabacoff.github.io/datavis/Data.html#MPG

Data Science A.Y. 2023-2024

Department of CSE Page 94

Figure: Side-by-side bar chart

Segmented bar chart

A segmented bar plot is a stacked bar plot where each bar represents 100 percent. You can create

a segmented bar chart using the position = "filled" option.

Figure: Segmented bar chart

Improving the color and labeling

You can use additional options to improve color and labeling. In the graph below

 factor modifies the order of the categories for the class variable and both the order and

the labels for the drive variable

 scale_y_continuous modifies the y-axis tick mark labels

 labs provides a title and changed the labels for the x and y axes and the legend

 scale_fill_brewer changes the fill color scheme

 theme_minimal removes the grey background and changed the grid color

library(ggplot2)

bar plot, with each bar representing 100%

ggplot(mpg,

aes(x = class,

fill =drv)) +

geom_bar(position ="fill") +

labs(y ="Proportion")

Data Science A.Y. 2023-2024

Department of CSE Page 95

Figure: Segmented bar chart with improved labeling and color

Other plots

Mosaic plots provide an alternative to stacked bar charts for displaying the relationship between

categorical variables. They can also provide more sophisticated statistical information.

Quantitative vs. Quantitative

The relationship between two quantitative variables is typically displayed using scatterplots and

line graphs.

Scatterplot

The simplest display of two quantitative variables is a scatterplot, with each variable represented

on an axis. For example, using the Salaries dataset, we can plot experience (yrs.since.phd)

library(ggplot2)

bar plot, with each bar representing 100%,

reordered bars, and better labels and colors

library(scales)

ggplot(mpg,

aes(x =factor(class,
levels =c("2seater", "subcompact",

"compact", "midsize",

"minivan", "suv", "pickup")),

fill =factor(drv,

levels =c("f", "r", "4"),

labels =c("front-wheel",

"rear-wheel",

"4-wheel")))) +

geom_bar(position ="fill") +

scale_y_continuous(breaks =seq(0, 1, .2),

label = percent) +

scale_fill_brewer(palette ="Set2") +

labs(y ="Percent",

fill ="Drive Train",

x ="Class",

title ="Automobile Drive by Class") +

theme_minimal()

https://rkabacoff.github.io/datavis/Models.html#Mosaic
https://rkabacoff.github.io/datavis/Data.html#Salaries

Data Science A.Y. 2023-2024

Department of CSE Page 96

vs. academic salary (salary) for college professors.

Figure: Simple scatterplot

Adding best fit lines

It is often useful to summarize the relationship displayed in the scatterplot, using a best fit line.

Many types of lines are supported, including linear, polynomial, and nonparametric (loess). By

default, 95% confidence limits for these lines are displayed.

Figure: Scatterplot with linear fit line

Line plot

When one of the two variables represents time, a line plot can be an effective method of display-

ing relationship. For example, the code below displays the relationship between time (year) and

life expectancy (lifeExp) in the United States between 1952 and 2007. The data comes from

the gapminder dataset.

library(ggplot2)

data(Salaries, package="carData")

simple scatterplot

ggplot(Salaries,

aes(x =yrs.since.phd,

y = salary)) +

geom_point()

scatterplot with linear fit line
ggplot(Salaries,

aes(x =yrs.since.phd,

y = salary)) +

geom_point(color="steelblue") +

geom_smooth(method ="lm")

https://rkabacoff.github.io/datavis/Data.html#Gapminder

Data Science A.Y. 2023-2024

Department of CSE Page 97

Figure: Simple line plot

Categorical vs. Quantitative

When plotting the relationship between a categorical variable and a quantitative variable, a large

number of graph types are available. These include bar charts using summary statistics, grouped

kernel density plots, side-by-side box plots, side-by-side violin plots, mean/sem plots, ridgeline

plots, and Cleveland plots.

Bar chart (on summary statistics)

In previous sections, bar charts were used to display the number of cases by category for a single

variable or for two variables. You can also use bar charts to display other summary statistics

(e.g., means or medians) on a quantitative variable for each level of a categorical variable.

For example, the following graph displays the mean salary for a sample of university professors

by their academic rank.

data(gapminder, package="gapminder")

Select US cases

library(dplyr)

plotdata<-filter(gapminder,

country == "United States")

simple line plot

ggplot(plotdata,

aes(x = year,

y =lifeExp)) +

geom_line()

https://rkabacoff.github.io/datavis/Univariate.html#Barchart
https://rkabacoff.github.io/datavis/Univariate.html#Barchart
https://rkabacoff.github.io/datavis/Bivariate.html#Categorical-Categorical

Data Science A.Y. 2023-2024

Department of CSE Page 98

Figure: Bar chart displaying means

Grouped kernel density plots

One can compare groups on a numeric variable by superimposing kernel density plots in a single

graph.

Figure: Grouped kernel density plots

data(Salaries, package="carData")

calculate mean salary for each rank

library(dplyr)

plotdata<-Salaries %>%

group_by(rank) %>%

summarize(mean_salary =mean(salary))

plot mean salaries

ggplot(plotdata,

aes(x = rank,

y =mean_salary)) +

geom_bar(stat ="identity")

plot the distribution of salaries

by rank using kernel density plots
ggplot(Salaries,

aes(x = salary,

fill = rank)) +

geom_density(alpha =0.4) +

labs(title ="Salary distribution by rank")

https://rkabacoff.github.io/datavis/Univariate.html#Kernel

Data Science A.Y. 2023-2024

Department of CSE Page 99

Box plots

A boxplot displays the 25th percentile, median, and 75th percentile of a distribution. The whiskers

(vertical lines) capture roughly 99% of a normal distribution, and observations outside this range

are plotted as points representing outliers (see the figure below).

Side-

by-side box plots are very useful for comparing groups (i.e., the levels of a categorical variable)

on a numerical

variable.

Figure: Side-by-side boxplots

Violin plots

Violin plots are similar to kernel density plots, but are mirrored and rotated 90o.

plot the distribution of salaries by rank using boxplots
ggplot(Salaries,
aes(x = rank,

y = salary)) +

geom_boxplot() +

labs(title ="Salary distribution by rank")

plot the distribution of salaries

by rank using violin plots

ggplot(Salaries,

aes(x = rank,

y = salary)) +

geom_violin() +

labs(title ="Salary distribution by rank")

https://rkabacoff.github.io/datavis/Univariate.html#Kernel

Data Science A.Y. 2023-2024

Department of CSE Page 100

Figure: Side-by-side violin plots

Ridgeline plots

A ridgeline plot (also called a joyplot) displays the distribution of a quantitative variable for sev-

eral groups. They’re similar to kernel density plots with vertical faceting, but take up less room.

Ridgeline plots are created with the ggridges package.

Using the Fuel economy dataset, let’s plot the distribution of city driving miles per gallon by car

class.

Figure: Ridgeline graph with color fill

Mean/SEM plots

A popular method for comparing groups on a numeric variable is the mean plot with error bars.

Error bars can represent standard deviations, standard error of the mean, or confidence intervals.

In this section, we’ll plot means and standard errors.

create ridgeline graph

library(ggplot2)

library(ggridges)

ggplot(mpg,

aes(x =cty,

y = class,

fill = class)) +

geom_density_ridges() +

theme_ridges() +

labs("Highway mileage by auto class") +

theme(legend.position ="none")

https://rkabacoff.github.io/datavis/Univariate.html#Kernel
https://rkabacoff.github.io/datavis/Multivariate.html#Faceting
https://rkabacoff.github.io/datavis/Data.html#MPG

Data Science A.Y. 2023-2024

Department of CSE Page 101

The resulting dataset is given below.

Table 4.1: Plot data

Rank n mean sd se ci

AsstProf 67 80775.99 8174.113 998.6268 1993.823

AssocProf 64 93876.44 13831.700 1728.9625 3455.056

Prof 266 126772.11 27718.675 1699.5410 3346.322

plot the means and standard errors

ggplot(plotdata,

aes(x = rank,

y = mean,

group =1)) +

geom_point(size =3) +
geom_line() +

geom_errorbar(aes(ymin = mean -se,

ymax = mean +se),

w idth = .1)

calculate means, standard deviations,

standard errors, and 95% confidence

intervals by rank

library(dplyr)

plotdata<-Salaries %>%

group_by(rank) %>%

summarize(n =n(),

mean =mean(salary),

sd =sd(salary),

se =sd/sqrt(n),

ci =qt(0.975, df = n -1) *sd/sqrt(n))

Data Science A.Y. 2023-2024

Department of CSE Page 102

Figure: Mean plots with standard error bars

Strip plots

The relationship between a grouping variable and a numeric variable can be displayed with a

scatter plot. For example

Figure: Categorical by quantiative scatterplot

Combining jitter and boxplots

It may be easier to visualize distributions if we add boxplots to the jitter plots.

plot the distribution of salaries

by rank using strip plots

ggplot(Salaries,

aes(y = rank,

x = salary)) +

geom_point() +

plot the distribution of salaries

by rank using jittering

library(scales)

ggplot(Salaries,

aes(x =factor(rank,

labels =c("Assistant\nProfessor",

Associate\nProfessor",

"Full\nProfessor")),

Data Science A.Y. 2023-2024

Department of CSE Page 103

Figure: Jitter plot with superimposed box plots

Beeswarm Plots

Beeswarm plots (also called violin scatter plots) are similar to jittered scatterplots, in that they

display the distribution of a quantitative variable by plotting points in way that reduces overlap.

In addition, they also help display the density of the data at each point (in a manner that is simi-

lar to a violin plot). Continuing the previous example

color = rank)) +

geom_boxplot(size=1,

outlier.shape =1,

outlier.color ="black",

outlier.size =3) +

geom_jitter(alpha =0.5,

width=.2) +

scale_y_continuous(label = dollar) +

labs(title ="Academic Salary by Rank",

subtitle ="9-month salary for 2008-2009",

x ="",

y ="") +

theme_minimal() +

https://rkabacoff.github.io/datavis/Bivariate.html#ViolinPlot

Data Science A.Y. 2023-2024

Department of CSE Page 104

Figure: Beeswarm plot

.5.5.3.9 Cleveland Dot Charts

Cleveland plots are useful when you want to compare a numeric statistic for a large number of

groups. For example, say that you want to compare the 2007 life expectancy for Asian country

using the gapminder dataset.

Figure: Basic Cleveland dot plot

Multivariate Graphs:

Multivariate graphs display the relationships among three or more variables. There are two

common methods for accommodating multiple variables: grouping and faceting.

Grouping

In grouping, the values of the first two variables are mapped to the x and y axes. Then additional

variables are mapped to other visual characteristics such as color, shape, size, line type, and

transparency. Grouping allows you to plot the data for multiple groups in a single graph.

Using the Salaries dataset, let’s display the relationship between yrs.since.phd and salary.

data(gapminder, package="gapminder")

subset Asian countries in 2007

library(dplyr)

plotdata<-gapminder%>%

filter(continent == "Asia"&

year ==2007)

basic Cleveland plot of life expectancy by country

ggplot(plotdata,

aes(x=lifeExp, y = country)) +

geom_point()

https://rkabacoff.github.io/datavis/Data.html#Gapminder
https://rkabacoff.github.io/datavis/Data.html#Salaries

Data Science A.Y. 2023-2024

Department of CSE Page 105

Figure: Simple scatterplot

Next, let’s include the rank of the professor, using color.

Figure: Scatterplot with color mapping

Faceting

In faceting, a graph consists of several separate plots or small multiples, one for each level of a

third variable, or combination of variables. It is easiest to understand this with an example.

library(ggplot2)

data(Salaries, package="carData")

plot experience vs. salary
ggplot(Salaries,

aes(x =yrs.since.phd,

y = salary)) +

geom_point() +

labs(title ="Academic salary by years since degree")

plot experience vs. salary (color represents rank)
ggplot(Salaries, aes(x =yrs.since.phd,

y = salary,

color=rank)) +

geom_point() +

labs(title ="Academic salary by rank and years since degree")

Data Science A.Y. 2023-2024

Department of CSE Page 106

Figure: Salary distribution by rank

The facet_wrap function creates a separate graph for each level of rank. The ncol option controls

the number of columns.

plot salary histograms by rank

ggplot(Salaries, aes(x = salary)) +

geom_histogram(fill ="cornflowerblue",

color ="white") +

facet_wrap(~rank, ncol =1) +

labs(title ="Salary histograms by rank")

	DIGITAL NOTES
	DATA SCIENCE (R20A6703)
	(AutonomousInstitution–UGC,Govt.ofIndia)
	Introduction to Data Science and Overview of R
	Roles in a data science project
	PROJECT SPONSOR
	KEEP THE SPONSOR INFORMED AND INVOLVED
	CLIENT
	DATA SCIENTIST
	DATA ARCHITECT
	OPERATIONS
	The Lifecycle of Data Science
	1. Problem identification
	2. Business Understanding
	 KPI (Key Performance Indicator)
	 SLA (Service Level Agreement)
	3. Collecting Data
	4. Pre-processing data
	5. Analyzing data
	6. Data Modelling
	7. Model Evaluation/ Monitoring
	 Data Drift Analysis
	 Model Drift Analysis
	8. Model Training
	9. Model Deployment
	10. Driving insights and generating BI reports
	11. Taking a decision based on insight
	Setting Expectations
	Features Of R
	2) Platform Independent
	3) Machine Learning Operations
	4) Exemplary support for data wrangling
	5) Quality plotting and graphing
	6) The array of packages
	7) Statistics
	8) Continuously Growing
	Limitations of R
	2) Basic Security
	3) Complicated Language
	4) Weak Origin
	5) Lesser Speed
	Basic Data Types The Numeric Type
	The Integer Type
	The Complex Type
	The Logical Type

	Data Structures vectors
	Matrix
	Lists
	Factors
	Accessing components of factor
	Generating Factor Levels
	Example
	Output

	Changing the Order of Levels
	Subsetting R Objects
	Subsetting a Vector
	Subsetting a Matrix
	Subsetting Lists

	Partial Matching
	Removing NA Values
	Control Structures
	if condition
	Syntax:
	Example:
	Output:

	if-else condition
	Syntax:
	Example:
	Output:
	for loop
	Syntax: (1)
	Example: (1)
	Output: (1)

	Nested loops
	for(i in1:3)

	while loop
	Syntax:
	Example:
	Output:

	repeat loop and break statement
	Example:
	Output:

	next statement
	Example:
	Output:

	Functions

	Named Arguments
	Return Value from R Function
	Syntax:
	Output:
	Method 2: R function to return multiple values as a list
	Syntax: (1)
	Output: (1)
	Loading, Exploring and Managing Data
	Reading and Writing Data
	Output:
	Output: (1)
	Output: (2)
	Reading one line at a time
	Output: (3)
	Reading the whole file
	Syntax:
	Output: (4)

	Reading a file in a table format
	Output:
	Output: (1)
	Output: (2)
	Output: (3)
	Output: (4)

	Reading a file from the internet
	Output:

	Reading a CSV File
	Analyzing the CSV File
	Get the maximum salary
	Get the details of the person with max salary
	Get all the people working in IT department
	Get the persons in IT department whose salary is greater than 600
	Get the people who joined on or after 2014

	Writing into a CSV File
	Install xlsx Package
	Verify and Load the "xlsx" Package
	Input as xlsx File

	Reading the Excel File
	Input Data
	Reading XML File
	Get Number of Nodes Present in XML File
	Output
	Details of the First Node
	Get Different Elements of a Node
	Input Data (1)
	Read the JSON File
	Convert JSON to a Data Frame
	Reading in Larger Datasets with read.table
	Loading a large dataset: use fread() or functions from readr instead of read.xxx().
	Data files that don’t fit in memory
	1. Limit the number of lines you read (fread)
	2. Limit the number of columns you read (fread)
	3. Limiting both the number of rows and the number of columns using sqldf
	4. Streaming data
	Working with relational databases
	Loading data with SQL Screwdriver
	Loading data from a database into R
	Data manipulation packages
	1. dplyr Package
	2. data.table Package
	3. reshape2 Package
	4. tidyr Package
	5. Lubridate Package
	UNIT-III
	Modelling Methods-I: Choosing and evaluating Models
	Solving classification problems
	Naive Bayes:
	Decision trees:
	Logistic regression:
	Support vector machines:
	Solving scoring problems
	Linear regression
	Logistic regression
	Working without known targets
	Evaluating models
	Overfitting
	K-fold cross-validation
	Figure : Partitioning data for 3-fold cross-validation
	Measures of model performance
	The null model
	Single-variable models
	Evaluating classification models
	Spam classifications

	CONFUSION MATRIX
	CHANGING A SCORE TO A CLASSIFICATION
	A CCURACY
	ACCURACY IS AN INAPPROPRIATE MEASURE FOR UNBALANCED CLASSES
	PRECISION AND RECALL
	F1
	SENSITIVITY AND SPECIFICITY
	Evaluating scoring models

	ROOT MEAN SQUARE ERROR
	R-SQUARED
	CORRELATION
	DON’T USE CORRELATION TO EVALUATE MODEL QUALITY IN PRODUCTION
	ABSOLUTE ERROR
	Evaluating probability models

	THE RECEIVER OPERATING CHARACTERISTIC CURVE
	LOG LIKELIHOOD
	DEVIANCE
	AIC
	ENTROPY
	UNIT – IV
	Modelling Methods-II: Linear and logistic regression

	USING LINEAR REGRESSION :
	UNDERSTANDING LINEAR REGRESSION :
	INTRODUCING THE PUMS DATASET
	BUILDING A LINEAR REGRESSION MODEL
	MAKING PREDICTIONS:
	UNDERSTANDING LOGISTIC REGRESSION
	BUILDING A LOGISTIC REGRESSION MODEL
	MAKING PREDICTIONS
	UNIT-V
	Data visualization with R
	Introduction to ggplot2: A worked example
	ggplot
	geoms
	geom_point()
	grouping
	scales
	facets
	labels
	themes
	Placing the data and mapping options
	Graphs as objects
	Univariate graphs
	Categorical
	Bar chart
	Percents
	Sorting categories
	Labeling bars
	Overlapping labels
	Pie chart
	Tree map
	Quantitative
	Histogram
	Bins and bandwidths
	Kernel Density plot
	Smoothing parameter
	Dot Chart
	Bivariate Graphs:
	Categorical vs. Categorical
	Stacked bar chart
	Grouped bar chart
	Segmented bar chart
	Improving the color and labeling
	Other plots
	Quantitative vs. Quantitative
	Scatterplot
	Adding best fit lines
	Line plot
	Categorical vs. Quantitative
	Bar chart (on summary statistics)
	Grouped kernel density plots
	Box plots
	Violin plots
	Ridgeline plots
	Mean/SEM plots
	Strip plots
	Combining jitter and boxplots
	Beeswarm Plots
	.5.5.3.9 Cleveland Dot Charts
	Multivariate Graphs:
	Grouping
	Faceting

